Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (58)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • (-) Remove COL1A1 filter COL1A1 (38)
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (8) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (6) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (6) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • Basescope (1) Apply Basescope filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 LS Assay - RED (1) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter

Research area

  • Infectious Disease (17) Apply Infectious Disease filter
  • Inflammation (11) Apply Inflammation filter
  • Development (8) Apply Development filter
  • Other (6) Apply Other filter
  • Cancer (4) Apply Cancer filter
  • Neuroscience (4) Apply Neuroscience filter
  • Bone (3) Apply Bone filter
  • HIV (3) Apply HIV filter
  • Fibrosis (2) Apply Fibrosis filter
  • Other: Lung (2) Apply Other: Lung filter
  • Stem cell (2) Apply Stem cell filter
  • Aging (1) Apply Aging filter
  • AIDS (1) Apply AIDS filter
  • Atherosclerosis (1) Apply Atherosclerosis filter
  • Cardiology (1) Apply Cardiology filter
  • circRNAs (1) Apply circRNAs filter
  • Collagen-Replacement Therapy (1) Apply Collagen-Replacement Therapy filter
  • Developement (1) Apply Developement filter
  • diabetes (1) Apply diabetes filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • Heart Failure (1) Apply Heart Failure filter
  • human health (1) Apply human health filter
  • Immunology (1) Apply Immunology filter
  • Inflammation Bone (1) Apply Inflammation Bone filter
  • Kidney (1) Apply Kidney filter
  • Other: Hypertension (1) Apply Other: Hypertension filter
  • Other: Methods (1) Apply Other: Methods filter
  • Other: Skin (1) Apply Other: Skin filter
  • SIV (1) Apply SIV filter
  • Teeth (1) Apply Teeth filter

Category

  • Publications (58) Apply Publications filter
A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder

Nature communications

2022 Feb 04

Lui, JC;Raimann, A;Hojo, H;Dong, L;Roschger, P;Kikani, B;Wintergerst, U;Fratzl-Zelman, N;Jee, YH;Haeusler, G;Baron, J;
PMID: 35121733 | DOI: 10.1038/s41467-022-28318-4

SP7/Osterix is a transcription factor critical for osteoblast maturation and bone formation. Homozygous loss-of-function mutations in SP7 cause osteogenesis imperfecta type XII, but neomorphic (gain-of-new-function) mutations of SP7 have not been reported in humans. Here we describe a de novo dominant neomorphic missense variant (c.926 C > G:p.S309W) in SP7 in a patient with craniosynostosis, cranial hyperostosis, and long bone fragility. Histomorphometry shows increased osteoblasts but decreased bone mineralization. Mice with the corresponding variant also show a complex skeletal phenotype distinct from that of Sp7-null mice. The mutation alters the binding specificity of SP7 from AT-rich motifs to a GC-consensus sequence (typical of other SP family members) and produces an aberrant gene expression profile, including increased expression of Col1a1 and endogenous Sp7, but decreased expression of genes involved in matrix mineralization. Our study identifies a pathogenic mechanism in which a mutation in a transcription factor shifts DNA binding specificity and provides important in vivo evidence that the affinity of SP7 for AT-rich motifs, unique among SP proteins, is critical for normal osteoblast differentiation.
Feline hypertrophic cardiomyopathy: reduced microvascular density and involvement of CD34+ interstitial cells

Veterinary pathology

2021 Dec 27

Rodríguez, JMM;Fonfara, S;Hetzel, U;Kipar, A;
PMID: 34955067 | DOI: 10.1177/03009858211062631

The sequence of pathological events in feline hypertrophic cardiomyopathy (fHCM) is still largely unknown, although we know that fHCM is characterized by interstitial remodeling in a macrophage-driven pro-inflammatory environment and that myocardial ischemia might contribute to its progression. This study aimed to gain further insights into the structural changes associated with interstitial remodeling in fHCM with special focus on the myocardial microvasculature and the phenotype of the interstitial cells. Twenty-eight hearts (16 hearts with fHCM and 12 without cardiac disease) were evaluated in the current study, with immunohistochemistry, RNA-in situ hybridization, and transmission electron microscopy. Morphometrical evaluations revealed a statistically significant lower microvascular density in fHCM. This was associated with structural alterations in capillaries that go along with a widening of the interstitium due to the accumulation of edema fluid, collagen fibers, and mononuclear cells that also proliferated locally. The interstitial cells were mainly of fibroblastic or vascular phenotype, with a substantial contribution of predominantly resident macrophages. A large proportion expressed CD34 mRNA, which suggests a progenitor cell potential. Our results indicate that microvascular alterations are key events in the pathogenesis of fHCM and that myocardial interstitial cell populations with CD34+ phenotype play a role in the pathogenesis of the disease.
PPAR Pan Agonist MHY2013 Alleviates Renal Fibrosis in a Mouse Model by Reducing Fibroblast Activation and Epithelial Inflammation

International journal of molecular sciences

2023 Mar 02

Son, M;Kim, GY;Yang, Y;Ha, S;Kim, J;Kim, D;Chung, HY;Moon, HR;Chung, KW;
PMID: 36902313 | DOI: 10.3390/ijms24054882

The peroxisome proliferator-activated receptor (PPAR) nuclear receptor has been an interesting target for the treatment of chronic diseases. Although the efficacy of PPAR pan agonists in several metabolic diseases has been well studied, the effect of PPAR pan agonists on kidney fibrosis development has not been demonstrated. To evaluate the effect of the PPAR pan agonist MHY2013, a folic acid (FA)-induced in vivo kidney fibrosis model was used. MHY2013 treatment significantly controlled decline in kidney function, tubule dilation, and FA-induced kidney damage. The extent of fibrosis determined using biochemical and histological methods showed that MHY2013 effectively blocked the development of fibrosis. Pro-inflammatory responses, including cytokine and chemokine expression, inflammatory cell infiltration, and NF-κB activation, were all reduced with MHY2013 treatment. To demonstrate the anti-fibrotic and anti-inflammatory mechanisms of MHY2013, in vitro studies were conducted using NRK49F kidney fibroblasts and NRK52E kidney epithelial cells. In the NRK49F kidney fibroblasts, MHY2013 treatment significantly reduced TGF-β-induced fibroblast activation. The gene and protein expressions of collagen I and α-smooth muscle actin were significantly reduced with MHY2013 treatment. Using PPAR transfection, we found that PPARγ played a major role in blocking fibroblast activation. In addition, MHY2013 significantly reduced LPS-induced NF-κB activation and chemokine expression mainly through PPARβ activation. Taken together, our results suggest that administration of the PPAR pan agonist effectively prevented renal fibrosis in both in vitro and in vivo models of kidney fibrosis, implicating the therapeutic potential of PPAR agonists against chronic kidney diseases.
Neuroinflammatory Changes in Relation to Cerebrospinal Fluid Viral Load in Simian Immunodeficiency Virus Encephalitis.

MBio.

2019 May 28

Hammoud DA, Sinharay S, Shah S, Schreiber-Stainthorp W, Maric D, Muthusamy S, Lee DE, Lee CA, Basuli F, Reid WC, Wakim P, Matsuda K, Hirsch V, Nath A, Di Mascio M.
PMID: 31138753 | DOI: 10.1128/mBio.00970-19

The exact cause of neurocognitive dysfunction in HIV-positive patients despite successful control of the infection in the periphery is not completely understood. One suggested mechanism is a vicious cycle of microglial activation and release of proinflammatory chemokines/cytokines that eventually leads to neuronal loss and dysfunction. However, the exact role of microglial activation in the earliest stages of the infection with high cerebrospinal fluid (CSF) viral loads (VL) is unclear. In this study, we imaged the translocator protein (TSPO), a mitochondrial membrane receptor known to be upregulated in activated microglia and macrophages, in rhesus macaques before and multiple times after inoculation with a neurotropic simian immunodeficiency virus (SIV) strain (SIVsm804E), using 18F-DPA714 positron emission tomography (PET). The whole-brain standardized uptake values of TSPO at equilibrium reflecting total binding (SUVT) and binding potentials (BPND) were calculated and correlated with CSF and serum markers of disease, and a corresponding postmortem immunostaining analysis was also performed. SUVT was found to be inversely correlated with both CSF VL and monocyte chemoattractant protein 1 (MCP-1) levels. In SIV-infected macaques with very high CSF VL at necropsy (>106 copies/ml), we found decreased TSPO binding by PET, and this was supported by immunostaining which showed glial and neuronal apoptosis rather than microglial activation. On the other hand, with only moderately elevated CSF VL (∼104 copies/ml), we found increased TSPO binding as well as focal and diffuse microglial activation on immunostaining. Our results in the SIV-infected macaque model provide insights into the relationship between HIV neuropathology and CSF VL at various stages of the disease.IMPORTANCE Neurological and cognitive problems are a common complication of HIV infection and are prevalent even in treated individuals. Although the molecular processes underlying brain involvement with HIV are not completely understood, inflammation is suspected to play a significant role. Our work presents an in vivo assessment of neuroinflammation in an animal model of HIV, the simian immunodeficiency virus (SIV)-infected rhesus macaque. Using positron emission tomography (PET) imaging, we identified changes in brain inflammation after inoculation with SIV over time. Interestingly, we found decreased binding of the PET ligand in the presence of very high cerebrospinal fluid (CSF) viral loads. These findings were supported by immunostaining which showed marked glial loss instead of inflammation. This study provides insight into glial and neuronal changes associated with very high CSF viral load and could reflect similar changes occurring in HIV-infected patients.

CD4 depletion in SIV-infected macaques results in macrophage and microglia infection with rapid turnover of infected cells.

PLoS Pathog. 2014 Oct 30;10(10):e1004467.

Micci L, Alvarez X, Iriele RI, Ortiz AM, Ryan ES, McGary CS, Deleage C, McAtee BB, He T, Apetrei C, Easley K, Pahwa S, Collman RG, Derdeyn CA, Davenport MP, Estes JD, Silvestri G, Lackner AA, Paiardini M.
PMID: 25356757 | DOI: 10.1371/journal.ppat.1004467.

In rhesus macaques (RMs), experimental depletion of CD4+ T-cells prior to SIV infection results in higher viremia and emergence of CD4-independent SIV-envelopes. In this study we used the rhesus recombinant anti-CD4 antibody CD4R1 to deplete RM CD4+ T-cells prior to SIVmac251 infection and investigate the sources of the increased viral burden and the lifespan of productively infected cells. CD4-depleted animals showed (i) set-point viral load two-logs higher than controls; (ii) macrophages constituting 80% of all SIV vRNA+ cells in lymph node and mucosal tissues; (iii) substantial expansion of pro-inflammatory monocytes; (iv) aberrant activation and infection of microglial cells; and (v) lifespan of productively infected cells significantly longer in comparison to controls, but markedly shorter than previously estimated for macrophages. The net effect of CD4+ T-cell depletion is an inability to control SIV replication and a shift in the tropism of infected cells to macrophages, microglia, and, potentially, other CD4-low cells which all appear to have a shortened in vivo lifespan. We believe these findings have important implications for HIV eradication studies.
Imaging lymphoid tissues in nonhuman primates to understand SIV pathogenesis and persistence.

Curr Opin Virol.

2016 Aug 01

Deleage C, Turkbey B, Estes JD.
PMID: 27490446 | DOI: 10.1016/j.coviro.2016.07.002

CD4+ T cells are the primary HIV-1 target cell, with the vast majority of these cells residing within lymphoid tissue compartments throughout the body. Predictably, HIV-1 infection, replication, localization, reservoir establishment and persistence, as well as associated host immune and inflammatory responses and disease pathology principally take place within the tissues of the immune system. By virture of the fact that the virus-host struggle is played out within lymphoid and additional tissues compartments in HIV-1 infected individuals it is critical to understand HIV-1 infection and disease within these relevant tissue sites; however, there are obvious limitations to studying these dynamic processes in humans. Nonhuman primate (NHP) research has provided a vital bridge between basic and preclinical research and clinical studies, with experimental SIV infection of NHP models offering unique opportunities to understand key processes of HIV-1 infection and disease that are either not practically feasible or ethical in HIV-1 infected humans. In this review we will discuss current approaches to studying the tissue based immunopathogenesis of AIDS virus infection in NHPs, including both analyses of tissues obtained at biopsy or necropsy and complementary non-invasive imaging approaches that may have practical utility in monitoring HIV-1 disease in the clinical setting.

Mapping the cardiac vascular niche in heart failure

Nature communications

2022 May 31

Peisker, F;Halder, M;Nagai, J;Ziegler, S;Kaesler, N;Hoeft, K;Li, R;Bindels, EMJ;Kuppe, C;Moellmann, J;Lehrke, M;Stoppe, C;Schaub, MT;Schneider, RK;Costa, I;Kramann, R;
PMID: 35641541 | DOI: 10.1038/s41467-022-30682-0

The cardiac vascular and perivascular niche are of major importance in homeostasis and during disease, but we lack a complete understanding of its cellular heterogeneity and alteration in response to injury as a major driver of heart failure. Using combined genetic fate tracing with confocal imaging and single-cell RNA sequencing of this niche in homeostasis and during heart failure, we unravel cell type specific transcriptomic changes in fibroblast, endothelial, pericyte and vascular smooth muscle cell subtypes. We characterize a specific fibroblast subpopulation that exists during homeostasis, acquires Thbs4 expression and expands after injury driving cardiac fibrosis, and identify the transcription factor TEAD1 as a regulator of fibroblast activation. Endothelial cells display a proliferative response after injury, which is not sustained in later remodeling, together with transcriptional changes related to hypoxia, angiogenesis, and migration. Collectively, our data provides an extensive resource of transcriptomic changes in the vascular niche in hypertrophic cardiac remodeling.
Repetitive schistosoma exposure causes perivascular lung fibrosis and persistent pulmonary hypertension

Clinical science (London, England : 1979)

2023 Apr 26

Kumar, R;Lee, MH;Kassa, B;Fonseca Balladares, DC;Mickael, C;Sanders, L;Andruska, A;Kumar, M;Spiekerkoetter, E;Bandeira, A;Stenmark, KR;Tuder, RM;Graham, BB;
PMID: 37014925 | DOI: 10.1042/CS20220642

Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition.Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis.Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition.Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.
Comparison of two different toxin-induced kidney fibrosis models in terms of inflammatory responses

Toxicology

2021 Oct 04

Yang, Y;Ha, S;Jeong, S;Jang, CW;Kim, J;Im, DS;Chung, HY;Chung, KW;
PMID: 34619300 | DOI: 10.1016/j.tox.2021.152973

Chronic kidney disease (CKD) is characterized by persistent abnormalities in kidney function, accompanied by structural changes. Interstitial fibrosis, characterized by the accumulation of extracellular matrix (ECM) proteins, is frequently detected during CKD development. Given the multiple underlying causes of CKD, numerous animal models have been developed to advance our understanding of human nephropathy. Herein, we compared two reliable toxin-induced mouse kidney fibrosis models in terms of fibrosis and inflammation. Administration of folic acid (250 mg/kg, intraperitoneal injection) or an adenine diet (0.25 % for three weeks) afforded similar effects on kidney function, as detected by increased serum nitrogen levels. In addition, the kidneys exhibited a similar extent of tubule dilation and kidney damage. The degree of fibrosis was compared using various biological methods. Although both models developed a significant fibrotic phenotype, the adenine diet-fed model showed a marginally higher increase in fibrosis than the folic acid model, as reflected by increased kidney ECM gene and protein levels. We further compared inflammatory responses in the kidneys. Interestingly, pro-inflammatory responses, including cytokine expression and immune cell infiltration, were significantly increased in adenine diet-fed kidneys. Furthermore, collagen expression was identified in the macrophage-infiltrated region, implying the importance of inflammation in fibrogenesis. Collectively, we observed that the adenine diet-fed kidney fibrosis model presented a higher inflammatory response with increased fibrosis when compared with the folic acid-induced kidney fibrosis model, indicating the importance of the inflammatory response in fibrosis development.
Lymphatic Dissemination of SIV after Penile Inoculation

J Virol.

2016 Feb 10

Ma ZM, Dutra J, Fritts L, Miller CJ.
PMID: 26865706 | DOI: -

Abstract

The human immunodeficiency virus (HIV) is primarily transmitted by heterosexual contact and approximately equal numbers of men and women are infected with the virus worldwide. Understanding the biology of HIV acquisition and dissemination in men exposed to the virus by insertive penile intercourse is likely to help with the rational design of vaccines that can limit or prevent HIV transmission. To characterize the target cells and dissemination pathways involved in establishing systemic SIV infection, we necropsied male rhesus macaques at 1, 3, 7 and 14 days after penile SIV inoculation and quantified the levels unspliced SIV RNA and spliced SIV RNA in tissue lysates and the number of SIV RNA+ cells in tissues sections. We found that penile (glans, foreskin, coronal sulcus) T cells, and, to a lesser extent, macrophages and dendritic cells are primary targets of infection and that SIV rapidly reaches the regional lymph nodes. Seven days after inoculation SIV had disseminated to the blood, systemic lymph nodes and mucosal lymphoid tissues. Further, at 7 days post-inoculation (PI), spliced SIV RNA levels are highest in the genital lymph nodes indicating that this is the site where the infection is initially amplified. By 14 days PI spliced SIV RNA levels were high in all tissues, but they were highest in the gastrointestinal tract indicating that the primary site of virus replication had shifted from the genital lymph nodes to the gut. The stepwise pattern of virus replication and dissemination described here suggests that vaccine-elicited immune responses in the genital lymph nodes could help prevent the infection after penile SIV challenge.

IMPORTANCE:

To be most effective, vaccines should produce anti-viral immune responses in the anatomic sites of virus replication. Thus understanding the path taken by HIV from the mucosal surfaces, that are the site of virus exposure, to the deeper tissues where the virus replicates will provide insight into where AIDS vaccines should produce immunity to be most effective. In this study we determined that, by day 7 after penile inoculation, SIV has moved first to the inguinal lymph nodes and replicates to high levels. Although the virus is widely disseminated to other tissues by day 7, replication is largely limited to the inguinal lymph nodes. The step-by-step movement of SIV from penile mucosal surfaces to the draining lymph nodes may allow a HIV vaccine that produces immunity in these lymph nodes to block HIV from establishing an infection in an exposed person.

Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART

PLoS Pathog.

2018 Feb 21

Fisher BS, Green RR, Brown RR, Wood MP, Hensley-McBain T, Fisher C, Chang J, Miller AD, Bosche WJ, Lifson JD, Mavigner M, Miller CJ, Gale M Jr., Silvestri G, Chahroudi A, Klatt NR, Sodora DL.
PMID: 29466439 | DOI: 10.1371/journal.ppat.1006871

Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use). Utilizing the simian immunodeficiency virus (SIV) macaque model, a controlled study was conducted to evaluate the factors associated with liver inflammation and the impact of cART. We observed an increase in hepatic macrophages during untreated SIV infection that was associated with a number of inflammatory and fibrosis mediators (TNFα, CCL3, TGFβ). Moreover, an upregulation in the macrophage chemoattractant factor CCL2 was detected in the livers of SIV-infected macaques that coincided with an increase in the number of activated CD16+ monocyte/macrophages and T cells expressing the cognate receptor CCR2. Expression of Mac387 on monocyte/macrophages further indicated that these cells recently migrated to the liver. The hepatic macrophage and T cell levels strongly correlated with liver SIV DNA levels, and were not associated with the levels of 16S bacterial DNA. Utilizing in situ hybridization, SIV-infected cells were found primarily within portal triads, and were identified as T cells. Microarray analysis identified a strong antiviral transcriptomic signature in the liver during SIV infection. In contrast, macaques treated with cART exhibited lower levels of liver macrophages and had a substantial, but not complete, reduction in their inflammatory profile. In addition, residual SIV DNA and bacteria 16S DNA were detected in the livers during cART, implicating the liver as a site on-going immune activation during antiretroviral therapy. These findings provide mechanistic insights regarding how SIV infection promotes liver inflammation through macrophage recruitment, with implications for in HIV-infected individuals.

CD4+ Cell infiltration into subcutaneous adipose tissue is not indicative of productively infected cells during acute SHIV infection.

J Med Primatol.

2017 Jul 27

Hsu DC, Wegner MD, Sunyakumthorn P, Silsorn D, Tayamun S, Inthawong D, Kuncharin Y, Im-Erbsin R, Ege C, O'Connell RJ, Michael NL, Ndhlovu LC, Vasan S.
PMID: 28748665 | DOI: 10.1111/jmp.12298

Limited longitudinal data exist on the effect of HIV on adipose tissue (AT). We found an increase in CD4+ cells and detectable SHIV-RNA in AT during acute SHIV infection. SHIV-RNA+ cells were rare, suggesting that AT is unlikely to be a major source of productively infected cells in SHIV infection.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?