ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Hypertension research : official journal of the Japanese Society of Hypertension
2023 Feb 21
Ochiai, K;Mochida, Y;Nagase, T;Fukuhara, H;Yamaguchi, Y;Nagase, M;
PMID: 36810623 | DOI: 10.1038/s41440-023-01219-9
J Virol.
2018 Jul 11
Mavigner M, Habib J, Deleage C, Rosen E, Mattingly C, Bricker K, Kashuba A, Amblard F, Schinazi RF, Jean S, Cohen J, McGary C, Paiardini M, Wood MP, Sodora DL, Silvestri G, Estes J, Chahroudi A.
PMID: 29997216 | DOI: 10.1128/JVI.00562-18
Worldwide, nearly two million children are infected with HIV, with breastfeeding accounting for the majority of contemporary HIV transmissions. Antiretroviral therapy (ART) has reduced HIV-related morbidity and mortality but is not curative. The main barrier to a cure is persistence of latent HIV in long-lived reservoirs. However, our understanding of the cellular and anatomic sources of the HIV reservoir during infancy and childhood is limited. Here, we developed a pediatric model of ART suppression in orally SIV-infected rhesus macaque (RM) infants, with measurement of virus persistence in blood and tissues after 6-9 months of ART. Cross-sectional analyses were conducted to compare SIV RNA and DNA levels in adult and infant RMs naïve to treatment and on ART. We demonstrate efficient viral suppression following ART initiation in SIV-infected RM infants with sustained undetectable plasma viral loads in the setting of heterogeneous penetration of ART into lymphoid and gastrointestinal tissues and low drug levels in the brain. We further show reduction in SIV RNA and DNA on ART in lymphoid tissues of both infant and adult RMs, but stable (albeit low) levels of SIV RNA and DNA in the brains of viremic and ART-suppressed infants. Finally, we report a large contribution of naïve CD4+ T-cells to the total CD4 reservoir of SIV in blood and lymph nodes of ART-suppressed RM infants, that differs from what we show in adults. These results reveal important aspects of HIV/SIV persistence in infants and provide insight into strategic targets for cure interventions in a pediatric population.IMPORTANCE While antiretroviral therapy (ART) can reduce HIV replication, the virus cannot be eradicated from an infected individual and our incomplete understanding of HIV persistence in reservoirs greatly complicates the generation of a cure for HIV. Given the immaturity of the infant immune system, it is of critical importance to study HIV reservoirs specifically in this population. Here, we established a pediatric animal model to simulate breastfeeding transmission and study SIV reservoirs in rhesus macaques (RM) infants. Our study demonstrates that ART can be safely administered to infant RM for prolonged periods of time and efficiently controls viral replication in this model. SIV persistence was shown in blood and tissues with a similar anatomic distribution of SIV reservoirs in infant and adult RMs. However, in the peripheral blood and lymph nodes, a higher contribution of the naïve CD4+ T-cells to the SIV reservoir was observed in infants compared to adults.
JBMR Plus
2022 Jan 01
Chen, CP;Zhang, J;Zhang, B;Hassan, MG;Hane, K;
| DOI: 10.1002/jbm4.10638
World J Gastroenterol.
2018 Nov 09
Nielsen MFB, Mortensen MB, Detlefsen S.
PMID: 30416314 | DOI: 10.3748/wjg.v24.i41.4663
Abstract
AIM:
To determine whether it is possible to identify different immune phenotypic subpopulations of cancer-associated fibroblasts (CAFs) in pancreatic cancer (PC).
METHODS:
We defined four different stromal compartments in surgical specimens with PC: The juxtatumoural, peripheral, lobular and septal stroma. Tissue microarrays were produced containing all pre-defined PC compartments, and the expression of 37 fibroblast (FB) and 8 extracellular matrix (ECM) markers was evaluated by immunohistochemistry, immunofluorescence (IF), double-IF, and/or in situ hybridization. The compartment-specific mean labelling score was determined for each marker using a four-tiered scoring system. DOG1 gene expression was examined by quantitative reverse transcription PCR (qPCR).
RESULTS:
CD10, CD271, cytoglobin, DOG1, miR-21, nestin, and tenascin C exhibited significant differences in expression profiles between the juxtatumoural and peripheral compartments. The expression of CD10, cytoglobin, DOG1, nestin, and miR-21 was moderate/strong in juxtatumoural CAFs (j-CAFs) and barely perceptible/weak in peripheral CAFs (p-CAFs). The upregulation of DOG1 gene expression in PC compared to normal pancreas was verified by qPCR. Tenascin C expression was strong in the juxtatumoural ECM and barely perceptible/weak in the peripheral ECM. CD271 expression was barely perceptible in j-CAFs but moderate in the other compartments. Galectin-1 was stronger expressed in j-CAFs vs septal fibroblasts, PDGF-Rβ, tissue transglutaminase 2, and hyaluronic acid were stronger expressed in lobular fibroblasts vs p-CAFs, and plectin-1 was stronger expressed in j-CAFs vs l-FBs. The expression of the remaining 33 markers did not differ significantly when related to the quantity of CAFs/FBs or the amount of ECM in the respective compartments.
CONCLUSION:
Different immune phenotypic CAF subpopulations can be identified in PC, using markers such as cytoglobin, CD271, and miR-21. Future studies should determine whether CAF subpopulations have different functional properties.
Journal of inflammation research
2021 Sep 18
Henning, P;Movérare-Skrtic, S;Westerlund, A;Chaves de Souza, PP;Floriano-Marcelino, T;Nilsson, KH;El Shahawy, M;Ohlsson, C;Lerner, UH;
PMID: 34566421 | DOI: 10.2147/JIR.S323435
The Journal of clinical investigation
2022 Mar 01
Harper, J;Ribeiro, SP;Chan, CN;Aid, M;Deleage, C;Micci, L;Pino, M;Cervasi, B;Raghunathan, G;Rimmer, E;Ayanoglu, G;Wu, G;Shenvi, N;Barnard, RJ;Del Prete, GQ;Busman-Sahay, K;Silvestri, G;Kulpa, DA;Bosinger, SE;Easley, K;Howell, BJ;Gorman, D;Hazuda, DJ;Estes, JD;Sekaly, RP;Paiardini, M;
PMID: 35230978 | DOI: 10.1172/JCI155251
Pflugers Archiv : European journal of physiology
2021 Aug 06
Neder, TH;Schrankl, J;Fuchs, MAA;Broeker, KAE;Wagner, C;
PMID: 34355294 | DOI: 10.1007/s00424-021-02604-4
Gene Expr Patterns.
2018 Apr 06
Ledwon JK, Turin SY, Gosain AK, Topczewska JM.
PMID: 29630949 | DOI: 10.1016/j.gep.2018.04.002
Fibroblast growth factor (FGF) signaling is essential for many developmental processes and plays a pivotal role in skeletal homeostasis, regeneration and wound healing. FGF signals through one of five tyrosine kinase receptors: Fgfr1a, -1b, -2, -3, -4. To characterize the expression of zebrafish fgfr3 from the larval stage to adulthood, we used RNAscope in situ hybridization on paraffin sections of the zebrafish head. Our study revealed spatial and temporal distribution of fgfr3 transcript in chondrocytes of the head cartilages, osteoblasts involved in bone formation, ventricular zone of the brain, undifferentiated mesenchymal cells of the skin, and lens epithelium of the eye. In general, the expression pattern of zebrafish fgfr3 is similar to the expression observed in higher vertebrates.
Nature communications
2021 Aug 13
Nilsson, KH;Henning, P;Shahawy, ME;Nethander, M;Andersen, TL;Ejersted, C;Wu, J;Gustafsson, KL;Koskela, A;Tuukkanen, J;Souza, PPC;Tuckermann, J;Lorentzon, M;Ruud, LE;Lehtimäki, T;Tobias, JH;Zhou, S;Lerner, UH;Richards, JB;Movérare-Skrtic, S;Ohlsson, C;
PMID: 34389713 | DOI: 10.1038/s41467-021-25124-2
Nature communications
2021 Jul 29
Sun, J;Shin, DY;Eiseman, M;Yallowitz, AR;Li, N;Lalani, S;Li, Z;Cung, M;Bok, S;Debnath, S;Marquez, SJ;White, TE;Khan, AG;Lorenz, IC;Shim, JH;Lee, FS;Xu, R;Greenblatt, MB;
PMID: 34326333 | DOI: 10.1038/s41467-021-24819-w
J Immunol
2017 Apr 24
Vinton CL, Ortiz AM, Calantone N, Mudd JC, Deleage C, Morcock DR, Whitted S, Estes JD, Hirsch VM, Brenchley JM.
PMID: 28438898 | DOI: 10.4049/jimmunol.1700136
African green monkeys (AGMs) are a natural host of SIV that do not develop simian AIDS. Adult AGMs naturally have low numbers of CD4+T cells and a large population of MHC class II-restricted CD8αα T cells that are generated through CD4 downregulation in CD4+ T cells. In this article, we study the functional profiles and SIV infection status in vivo of CD4+ T cells, CD8αα T cells, and CD8αβ T cells in lymph nodes, peripheral blood, and bronchoalveolar lavage fluid of AGMs and rhesus macaques (in which CD4 downregulation is not observed). We show that, although CD8αα T cells in AGMs maintain functions associated with CD4+ T cells (including Th follicular functionality in lymphoid tissues and Th2 responses in bronchoalveolar lavage fluid), they also accumulate functions normally attributed to canonical CD8+ T cells. These hyperfunctional CD8αα T cells are found to circulate peripherally, as well as reside within the lymphoid tissue. Due to their unique combination of CD4 and CD8 T cell effector functions, these CD4- CD8αα T cells are likely able to serve as an immunophenotype capable of Th1, follicular Th, and CTL functionalities, yet they are unable to be infected by SIV. These data demonstrate the ambiguity of CD4/CD8 expression in dictating the functional capacities of T cells and suggest that accumulation of hyperfunctional CD8αα T cells in AGMs may lead to tissue-specific antiviral immune responses in lymphoid follicles that limit SIV replication in this particular anatomical niche.
The Journal of infectious diseases
2022 Mar 11
Kroon, E;Chottanapund, S;Buranapraditkun, S;Sacdalan, C;Colby, DJ;Chomchey, N;Prueksakaew, P;Pinyakorn, S;Trichavaroj, R;Vasan, S;Manasnayakorn, S;Reilly, C;Helgeson, E;Anderson, J;David, C;Zulk, J;de Souza, M;Tovanabutra, S;Schuetz, A;Robb, ML;Douek, DC;Phanuphak, N;Haase, A;Ananworanich, J;Schacker, TW;
PMID: 35275599 | DOI: 10.1093/infdis/jiac089
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com