Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (189)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • (-) Remove Lgr5 filter Lgr5 (151)
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • (-) Remove V-nCoV2019-S filter V-nCoV2019-S (37)
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (37) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (25) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (20) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Assay (19) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (14) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (10) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Fluorescent Multiplex Assay (8) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • Cancer (61) Apply Cancer filter
  • Stem Cells (59) Apply Stem Cells filter
  • Covid (30) Apply Covid filter
  • Infectious (30) Apply Infectious filter
  • Development (22) Apply Development filter
  • Inflammation (15) Apply Inflammation filter
  • Stem cell (15) Apply Stem cell filter
  • Other (11) Apply Other filter
  • Developmental (3) Apply Developmental filter
  • Cancer Stem Cells (2) Apply Cancer Stem Cells filter
  • Neuroscience (2) Apply Neuroscience filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cell transcriptomics (1) Apply Cell transcriptomics filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • Colitis (1) Apply Colitis filter
  • Covid-19 (1) Apply Covid-19 filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Diet (1) Apply Diet filter
  • Evolution (1) Apply Evolution filter
  • Fibrosis (1) Apply Fibrosis filter
  • Gastro (1) Apply Gastro filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Keratin (1) Apply Keratin filter
  • lncRNA (1) Apply lncRNA filter
  • Metabolism (1) Apply Metabolism filter
  • Organoid (1) Apply Organoid filter
  • Organoids (1) Apply Organoids filter
  • Other: Blood Vessels (1) Apply Other: Blood Vessels filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Immunity (1) Apply Other: Immunity filter
  • Other: Prostate (1) Apply Other: Prostate filter
  • Pulmonology (1) Apply Pulmonology filter
  • Radiation enteritis (1) Apply Radiation enteritis filter
  • Radiotherapy (1) Apply Radiotherapy filter
  • Regeneration (1) Apply Regeneration filter
  • Reproduction (1) Apply Reproduction filter
  • scRNAseq (1) Apply scRNAseq filter
  • Signalling (1) Apply Signalling filter
  • Single Cell (1) Apply Single Cell filter
  • therapeutics (1) Apply therapeutics filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Tumourigenesis (1) Apply Tumourigenesis filter

Category

  • Publications (189) Apply Publications filter
A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy

Nature.

2018 Oct 08

Sánchez-Danés A, Larsimont JC, Liagre M, Muñoz-Couselo E, Lapouge G, Brisebarre A, Dubois C, Suppa M, Sukumaran V, Del Marmol V, Tabernero J, Blanpain C.
PMID: 30297799 | DOI: 10.1038/s41586-018-0603-3

Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoothened inhibitor, leads to BCC shrinkage in the majority of patients with BCC3, but the mechanism by which it mediates BCC regression is unknown. Here we used two genetically engineered mouse models of BCC4 to investigate the mechanisms by which inhibition of Smoothened mediates tumour regression. We found that vismodegib mediates BCC regression by inhibiting a hair follicle-like fate and promoting the differentiation of tumour cells. However, a small population of tumour cells persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting, slow-cycling tumour population expresses LGR5 and is characterized by active Wnt signalling. Combining Lgr5 lineage ablation or inhibition of Wnt signalling with vismodegib treatment leads to eradication of BCC. Our results show that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors is a clinically relevant strategy for overcoming tumour relapse in BCC.

FGF10 Is Required for Circumvallate Papilla Morphogenesis by Maintaining Lgr5 Activity.

Front Physiol.

2018 Aug 28

Zhang S, Choi HS, Jung HS, Lee JM.
PMID: 30233392 | DOI: 10.3389/fphys.2018.01192

Taste buds develop in different regions of the mammal oral cavity. Adult stem cells in various organs including the tongue papillae are marked by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homolog, Lgr6. Recent studies have reported that adult taste stem/progenitor cells in circumvallate papilla (CVP) on the posterior tongue are Lgr5-positive. In this study, we confirm the Lgr5 expression pattern during CVP development. A previous study reported that mesenchymal Fgf10 is necessary for maintaining epithelial Lgr5-positive stem/progenitor cells. To confirm the interaction between Lgr5-positive CVP epithelium and mesenchymal factor FGF10, reverse recombination (180-degree) was performed after tongue epithelium detachment. FGF10 protein-soaked bead implantation was performed after reverse recombination to rescue CVP development. Moreover, we reduced mesenchymal Fgf10 by BIO and SU5402 treatment which disrupted CVP morphogenesis. This study suggests that the crosstalk between epithelial Lgr5 and mesenchymal Fgf10 plays a pivotal role in CVP epithelium invagination during mouse tongue CVP development by maintaining Lgr5-positive stem/progenitor cells.

Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth

Nature cardiovascular research

2022 May 01

Bernier-Latmani, J;Cisarovsky, C;Mahfoud, S;Ragusa, S;Dupanloup, I;Barras, D;Renevey, F;Nassiri, S;Anderle, P;Squadrito, ML;Siegert, S;Davanture, S;González-Loyola, A;Fournier, N;Luther, SA;Benedito, R;Valet, P;Zhou, B;De Palma, M;Delorenzi, M;Sempoux, C;Petrova, TV;
PMID: 35602406 | DOI: 10.1038/s44161-022-00061-5

Stem and progenitor cells residing in the intestinal crypts drive the majority of colorectal cancers (CRCs), yet vascular contribution to this niche remains largely unexplored. VEGFA is a key driver of physiological and tumor angiogenesis. Accordingly, current anti-angiogenic cancer therapies target the VEGFA pathway. Here we report that in CRC expansion of the stem/progenitor pool in intestinal crypts requires VEGFA-independent growth and remodeling of blood vessels. Epithelial transformation induced expression of the endothelial peptide apelin, directs migration of distant venous endothelial cells towards progenitor niche vessels ensuring optimal perfusion. In the absence of apelin, loss of injury-inducible PROX1+ epithelial progenitors inhibited both incipient and advanced intestinal tumor growth. Our results establish fundamental principles for the reciprocal communication between vasculature and the intestinal progenitor niche and provide a mechanism for resistance to VEGFA-targeting drugs in CRCs.
Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop

Cell death & disease

2022 Feb 21

Walter, RJ;Sonnentag, SJ;Munoz-Sagredo, L;Merkel, M;Richert, L;Bunert, F;Heneka, YM;Loustau, T;Hodder, M;Ridgway, RA;Sansom, OJ;Mely, Y;Rothbauer, U;Schmitt, M;Orian-Rousseau, V;
PMID: 35190527 | DOI: 10.1038/s41419-022-04607-0

Enhancement of Wnt signaling is fundamental for stem cell function during intestinal regeneration. Molecular modules control Wnt activity by regulating signal transduction. CD44 is such a positive regulator and a Wnt target gene. While highly expressed in intestinal crypts and used as a stem cell marker, its role during intestinal homeostasis and regeneration remains unknown. Here we propose a CD44 positive-feedback loop that boosts Wnt signal transduction, thus impacting intestinal regeneration. Excision of Cd44 in Cd44fl/fl;VillinCreERT2 mice reduced Wnt target gene expression in intestinal crypts and affected stem cell functionality in organoids. Although the integrity of the intestinal epithelium was conserved in mice lacking CD44, they were hypersensitive to dextran sulfate sodium, and showed more severe inflammation and delayed regeneration. We localized the molecular function of CD44 at the Wnt signalosome, and identified novel DVL/CD44 and AXIN/CD44 complexes. CD44 thus promotes optimal Wnt signaling during intestinal regeneration.
Gastrointestinal Pathology in Samples from Coronavirus Disease 2019 (COVID-19)-Positive Patients

Archives of pathology & laboratory medicine

2021 May 07

Westerhoff, M;Jones, D;Hrycaj, SM;Chan, MP;Pantanowitz, L;Tu, H;Choi, K;Greenson, J;Lamps, L;
PMID: 33961007 | DOI: 10.5858/arpa.2021-0137-SA

-Although primarily considered a respiratory illness, coronavirus disease 2019 (COVID-19) can cause gastrointestinal manifestations. -To evaluate histopathology and in situ hybridization for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in gastrointestinal samples from patients with recent and remote COVID-19. -Patients with positive SARS-CoV-2 nasopharyngeal tests and a gastrointestinal tissue specimen were included. SARS-CoV-2 in situ hybridization (ISH) was performed on each sample. A subset had SARS-CoV-2 next generation sequencing (NGS) performed. -Twenty-five patients met inclusion criteria. Five had positive SARS-CoV-2 nasopharyngeal tests within 7 days of their gastrointestinal procedure. Two were ulcerative colitis patients on steroid therapy who lacked typical COVID-19 symptoms. Their colectomies showed severe ulcerative colitis; one demonstrated SARS-CoV-2 by NGS but a negative ISH. Another had an ischemic colon resected as a complication of the COVID-19 course; however, both ISH and NGS were negative. A fourth had a normal-appearing terminal ileum but positive ISH and NGS. The fifth patient had ileal ulcers with SARS-CoV-2 negativity by both modalities. The remaining 20 patients had positive nasopharyngeal tests an average of 53 days prior to procedure. None of their samples demonstrated SARS-CoV-2 ISH positivity, but one was positive on NGS despite a negative nasopharyngeal test. -Gastrointestinal findings from SARS-CoV-2-infected patients ranged from normal with virus detected by ISH and NGS, to bowel ischemia secondary to systemic viral effects, without evidence of virus in the tissue. No distinct histologic finding was identified in those with gastrointestinal tissue specimens demonstrating SARS-CoV-2 positivity in this cohort.
Mature gastric chief cells are not required for the development of metaplasia

Am J Physiol Gastrointest Liver Physiol.

2018 Jan 18

Kinoshita H, Hayakawa Y, Niu Z, Konishi M, Hata M, Tsuboi M, Hayata Y, Hikiba Y, Ihara S, Nakagawa H, Hirata Y, Wang TC, Koike K.
PMID: 29345968 | DOI: 10.1152/ajpgi.00351.2017

During human gastric carcinogenesis, intestinal metaplasia (IM) is frequently seen in the atrophic stomach. In mice, a distinct type of metaplasia known as spasmolytic polypeptide-expressing metaplasia (SPEM) is found in several inflammatory and genetically engineered models. Given the diversity of long- and short-term models of mouse SPEM, it remains unclear whether all models have a shared or distinct molecular mechanism. The origin of SPEM in mice is currently under debate. It is postulated that stem or progenitor cells acquire genetic alterations that then supply metaplastic cell clones, while the possibility of transdifferentiation or dedifferentiation from mature gastric chief cells has also been suggested. In this study, we report that loss of chief cells was sufficient to induce short-term regenerative SPEM-like lesions that originated from chief cell precursors in the gastric neck region. Furthermore, Lgr5+ mature chief cells failed to contribute to both short- and long-term metaplasia, whereas isthmus stem and progenitor cells efficiently contributed to long-term metaplasia. Interestingly, multiple administrations of high-dose pulsed tamoxifen induced expansion of Lgr5 expression and Lgr5-CreERT recombination within the isthmus progenitors apart from basal chief cells. Thus, we conclude that short-term SPEM represents a regenerative process arising from neck progenitors following chief cell loss, whereas true long-term SPEM originates from isthmus progenitors. Mature gastric chief cells may be dispensable for SPEM development.

Integrated histopathological, lipidomic, and metabolomic profiles reveal mink is a useful animal model to mimic the pathogenicity of severe COVID-19 patients

Signal transduction and targeted therapy

2022 Jan 28

Song, Z;Bao, L;Deng, W;Liu, J;Ren, E;Lv, Q;Liu, M;Qi, F;Chen, T;Deng, R;Li, F;Liu, Y;Wei, Q;Gao, H;Yu, P;Han, Y;Zhao, W;Zheng, J;Liang, X;Yang, F;Qin, C;
PMID: 35091528 | DOI: 10.1038/s41392-022-00891-6

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.
CCR2 Signaling Restricts SARS-CoV-2 Infection

mBio

2021 Nov 09

Vanderheiden, A;Thomas, J;Soung, AL;Davis-Gardner, ME;Floyd, K;Jin, F;Cowan, DA;Pellegrini, K;Shi, PY;Grakoui, A;Klein, RS;Bosinger, SE;Kohlmeier, JE;Menachery, VD;Suthar, MS;
PMID: 34749524 | DOI: 10.1128/mBio.02749-21

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a historic pandemic of respiratory disease (coronavirus disease 2019 [COVID-19]), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2 signaling restricts the viral burden in the lung. We find that a recently developed mouse-adapted SARS-CoV-2 (MA-SARS-CoV-2) strain as well as the emerging B.1.351 variant trigger an inflammatory response in the lung characterized by the expression of proinflammatory cytokines and interferon-stimulated genes. Using intravital antibody labeling, we demonstrate that MA-SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. Single-cell RNA sequencing (scRNA-Seq) analysis of lung homogenates identified a hyperinflammatory monocyte profile. We utilize this model to demonstrate that mechanistically, CCR2 signaling promotes the infiltration of classical monocytes into the lung and the expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified a potential CCR2-monocyte axis that is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 has caused a historic pandemic of respiratory disease (COVID-19), and current evidence suggests that severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here, we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2-dependent infiltration of monocytes restricts the viral burden in the lung. We find that SARS-CoV-2 triggers an inflammatory response in the lung characterized by the expression of proinflammatory cytokines and interferon-stimulated genes. Using RNA sequencing and flow cytometry approaches, we demonstrate that SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. Mechanistically, CCR2 signaling promoted the infiltration of classical monocytes into the lung and the expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified that the CCR2 pathway is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection.
Plasticity within the niche ensures the maintenance of a Sox2+ stem cell population in the mouse incisor

Development.

2017 Nov 27

Sanz-Navarro M, Seidel K, Sun Z, Bertonnier-Brouty L, Amendt BA, Klein OD, Michon F.
PMID: 29180573 | DOI: 10.1242/dev.155929

In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signaling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate the heterogeneity of the Sox2+ population and reinforce its importance for incisor homeostasis.

The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche

Nat. Commun.

2018 Mar 28

Sehgal A, Donaldson DS, Pridans C, Sauter KA, Hume DA, Mabbott NA.
PMID: 29593242 | DOI: 10.1038/s41467-018-03638-6

Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinallamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium, and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5+ intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced, whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens.

Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration.

Cell Stem Cell.

2019 May 09

Pepe-Mooney BJ, Dill MT, Alemany A, Ordovas-Montanes J, Matsushita Y, Rao A, Sen A, Miyazaki M, Anakk S, Dawson PA, Ono N, Shalek AK, van Oudenaarden A, Camargo FD.
PMID: 31080134 | DOI: 10.1016/j.stem.2019.04.004

The liver can substantially regenerate after injury, with both main epithelial cell types, hepatocytes and biliary epithelial cells (BECs), playing important roles in parenchymal regeneration. Beyond metabolic functions, BECs exhibit substantial plasticity and in some contexts can drive hepatic repopulation. Here, we performed single-cell RNA sequencing to examine BEC and hepatocyte heterogeneity during homeostasisand after injury. Instead of evidence for a transcriptionally defined progenitor-like BEC cell, we found significant homeostatic BEC heterogeneity that reflects fluctuating activation of a YAP-dependent program. This transcriptional signature defines a dynamic cellular state during homeostasis and is highly responsive to injury. YAP signaling is induced by physiological bile acids (BAs), required for BEC survival in response to BA exposure, and is necessary for hepatocyte reprogramming into biliary progenitors upon injury. Together, these findings uncover molecular heterogeneity within the ductal epithelium and reveal YAP as a protective rheostat and regenerative regulator in the mammalian liver.

Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3-Lgr4 axis

The EMBO journal

2022 Jul 04

Wizenty, J;Müllerke, S;Kolesnichenko, M;Heuberger, J;Lin, M;Fischer, AS;Mollenkopf, HJ;Berger, H;Tacke, F;Sigal, M;
PMID: 35767364 | DOI: 10.15252/embj.2021109996

Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R-spondin 3 (Rspo3) signaling. This causes an expansion of the "gland base module," which consists of self-renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R-spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF-κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4-driven NF-κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R-spondin-Lgr and NF-κB signaling that links epithelial stem cell behavior and inflammatory responses to gland-invading H. pylori.

Pages

  • « first
  • ‹ previous
  • …
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?