Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (189)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • (-) Remove Lgr5 filter Lgr5 (151)
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • (-) Remove V-nCoV2019-S filter V-nCoV2019-S (37)
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (37) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (25) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (20) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Assay (19) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (14) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (10) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Fluorescent Multiplex Assay (8) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • Cancer (61) Apply Cancer filter
  • Stem Cells (59) Apply Stem Cells filter
  • Covid (30) Apply Covid filter
  • Infectious (30) Apply Infectious filter
  • Development (22) Apply Development filter
  • Inflammation (15) Apply Inflammation filter
  • Stem cell (15) Apply Stem cell filter
  • Other (11) Apply Other filter
  • Developmental (3) Apply Developmental filter
  • Cancer Stem Cells (2) Apply Cancer Stem Cells filter
  • Neuroscience (2) Apply Neuroscience filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cell transcriptomics (1) Apply Cell transcriptomics filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • Colitis (1) Apply Colitis filter
  • Covid-19 (1) Apply Covid-19 filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Diet (1) Apply Diet filter
  • Evolution (1) Apply Evolution filter
  • Fibrosis (1) Apply Fibrosis filter
  • Gastro (1) Apply Gastro filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Keratin (1) Apply Keratin filter
  • lncRNA (1) Apply lncRNA filter
  • Metabolism (1) Apply Metabolism filter
  • Organoid (1) Apply Organoid filter
  • Organoids (1) Apply Organoids filter
  • Other: Blood Vessels (1) Apply Other: Blood Vessels filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Immunity (1) Apply Other: Immunity filter
  • Other: Prostate (1) Apply Other: Prostate filter
  • Pulmonology (1) Apply Pulmonology filter
  • Radiation enteritis (1) Apply Radiation enteritis filter
  • Radiotherapy (1) Apply Radiotherapy filter
  • Regeneration (1) Apply Regeneration filter
  • Reproduction (1) Apply Reproduction filter
  • scRNAseq (1) Apply scRNAseq filter
  • Signalling (1) Apply Signalling filter
  • Single Cell (1) Apply Single Cell filter
  • therapeutics (1) Apply therapeutics filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Tumourigenesis (1) Apply Tumourigenesis filter

Category

  • Publications (189) Apply Publications filter
Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation.

Cell Stem Cell

2016 May 12

Dominguez-Brauer C, Hao Z, Elia AJ, Fortin JM, Nechanitzky R, Brauer PM, Sheng Y, Mana MD, Chio II, Haight J, Pollett A, Cairns R, Tworzyanski L, Inoue S, Reardon C, Marques A, Silvester J, Cox MA, Wakeham A, Yilmaz OH, Sabatini DM, van Es JH, Clevers H,
PMID: 27184401 | DOI: 10.1016/j.stem.2016.04.002

The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation. In the intestine, EphB/ephrinB interactions position cells along the crypt-villus axis and compartmentalize incipient colorectal tumors. Our study thus unveils an important new avenue by which Mule acts as an intestinal tumor suppressor by regulation of the intestinal stem cell niche.

Identification, Isolation, and Characterization of Human LGR5-positive Colon Adenoma Cells

bioRxiv

2017 Mar 18

Dame MK, Attili D, McClintock SD, Dedhia PH, Ouilette P, Hardt O, Chin AM, Xue X, Laliberte J, Katz EL, Newsome GM, Hill D, Miller A, Agorku D, Altheim CH, Bosio A, Simon B, Samuelson LC, Stoerker JA, Appelman HD, Varani J, Wicha MS, Brenner DE, Shah YM,
PMID: - | DOI: 10.1101/118034

The intestine is maintained by stem cells, marked by LGR5 expression, located at the base of crypts. Genetically engineered mouse models have provided information about marker genes and stem cell pathways. Less is known about human intestinal stem cells due to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas, adenocarcinomas, and normal colon, which we analyzed for variants in 71 colorectal cancer (CRC) associated genes. Normal and neoplastic colon tissue organoids were analyzed for LGR5 expression by immunohistochemistry. LGR5-positive cells were isolated from 4 adenoma organoid lines and analyzed by RNA-sequencing. LGR5 expression in epithelium and stroma was associated with tumor stage. Integrating functional experiments with RNA-seq data from LGR5-positive adenoma organoid cells and normal colon, we associated expression of CRC-specific genes, including DKK4, with LGR5 expression. This system can be used to study LGR5-expressing cells in human tissue homeostasis and carcinogenesis.

Visualization and targeting of LGR5+ human colon cancer stem cells.

Nature

2017 May 11

Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, Date S, Sugimoto S, Kanai T, Sato T.
PMID: 28355176 | DOI: 10.1038/nature22081

The cancer stem cell (CSC) theory highlights a self-renewing subpopulation of cancer cells that fuels tumour growth. The existence of human CSCs is mainly supported by xenotransplantation of prospectively isolated cells, but their clonal dynamics and plasticity remain unclear. Here, we show that human LGR5+ colorectal cancer cells serve as CSCs in growing cancer tissues. Lineage-tracing experiments with a tamoxifen-inducible Cre knock-in allele of LGR5 reveal the self-renewal and differentiation capacity of LGR5+ tumour cells. Selective ablation of LGR5+CSCs in LGR5-iCaspase9 knock-in organoids leads to tumour regression, followed by tumour regrowth driven by re-emerging LGR5+ CSCs. KRT20 knock-in reporter marks differentiated cancer cells that constantly diminish in tumour tissues, while reverting to LGR5+ CSCs and contributing to tumour regrowth after LGR5+ CSC ablation. We also show that combined chemotherapy potentiates targeting of LGR5+CSCs. These data provide insights into the plasticity of CSCs and their potential as a therapeutic target in human colorectal cancer.

Keratin-mediated hair growth and its underlying biological mechanism

Communications biology

2022 Nov 19

An, SY;Kim, HS;Kim, SY;Van, SY;Kim, HJ;Lee, JH;Han, SW;Kwon, IK;Lee, CK;Do, SH;Hwang, YS;
PMID: 36402892 | DOI: 10.1038/s42003-022-04232-9

Here we show that intradermal injection of keratin promotes hair growth in mice, which results from extracellular interaction of keratin with hair forming cells. Extracellular application of keratin induces condensation of dermal papilla cells and the generation of a P-cadherin-expressing cell population (hair germ) from outer root sheath cells via keratin-mediated microenvironmental changes. Exogenous keratin-mediated hair growth is reflected by the finding that keratin exposure from transforming growth factor beta 2 (TGFβ2)-induced apoptotic outer root sheath cells appears to be critical for dermal papilla cell condensation and P-cadherin-expressing hair germ formation. Immunodepletion or downregulation of keratin released from or expressed in TGFβ2-induced apoptotic outer root sheath cells negatively influences dermal papilla cell condensation and hair germ formation. Our pilot study provides an evidence on initiating hair regeneration and insight into the biological function of keratin exposed from apoptotic epithelial cells in tissue regeneration and development.
Ablating Lgr5-expressing prostatic stromal cells activates the ERK-mediated mechanosensory signaling and disrupts prostate tissue homeostasis

Cell reports

2022 Sep 06

Wei, X;Zhang, L;Zhang, Y;Cooper, C;Brewer, C;Tsai, CF;Wang, YT;Glaz, M;Wessells, HB;Que, J;Titus, MA;Cirulli, V;Glaser, A;Liu, T;Reder, NP;Creighton, CJ;Xin, L;
PMID: 36070687 | DOI: 10.1016/j.celrep.2022.111313

Functional implication of stromal heterogeneity in the prostate remains incompletely understood. Using lineage tracing and light-sheet imaging, we show that some fibroblast cells at the mouse proximal prostatic ducts and prostatic urethra highly express Lgr5. Genetic ablation of these anatomically restricted stromal cells, but not nonselective ablation of prostatic stromal cells, rapidly induces prostate epithelial turnover and dedifferentiation that are reversed following spontaneous restoration of the Lgr5+ stromal cells. RNA sequencing (RNA-seq) analysis indicates that ablating the Lgr5+ stromal cells activates a mechanosensory response. Ablating the Lgr5+ stromal cells impairs the control of prostatic ductal outlet, increases prostate tissue stiffness, and activates the mitogen-activated protein kinase (MAPK). Suppressing MAPK overrides the elevated epithelial proliferation. In summary, the Lgr5+ stromal cells regulate prostate tissue homeostasis and maintain its functional integrity in a long-distance manner. Our study implies that the cells at organ junctions most likely control organ homeostasis by sustaining a balanced mechanoforce.
R-SPONDIN2+ mesenchymal cells form the bud tip progenitor niche during human lung development

Developmental cell

2022 Jun 07

Hein, RFC;Wu, JH;Holloway, EM;Frum, T;Conchola, AS;Tsai, YH;Wu, A;Fine, AS;Miller, AJ;Szenker-Ravi, E;Yan, KS;Kuo, CJ;Glass, I;Reversade, B;Spence, JR;
PMID: 35679862 | DOI: 10.1016/j.devcel.2022.05.010

The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell

Cell reports

2021 Jun 23

Puray-Chavez, M;LaPak, KM;Schrank, TP;Elliott, JL;Bhatt, DP;Agajanian, MJ;Jasuja, R;Lawson, DQ;Davis, K;Rothlauf, PW;Liu, Z;Jo, H;Lee, N;Tenneti, K;Eschbach, JE;Shema Mugisha, C;Cousins, EM;Cloer, EW;Vuong, HR;VanBlargan, LA;Bailey, AL;Gilchuk, P;Crowe, JE;Diamond, MS;Hayes, DN;Whelan, SPJ;Horani, A;Brody, SL;Goldfarb, D;Major, MB;Kutluay, SB;
PMID: 34214467 | DOI: 10.1016/j.celrep.2021.109364

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.
Metastatic recurrence in colorectal cancer arises from residual EMP1 cells

Nature

2022 Nov 01

Cañellas-Socias, A;Cortina, C;Hernando-Momblona, X;Palomo-Ponce, S;Mulholland, EJ;Turon, G;Mateo, L;Conti, S;Roman, O;Sevillano, M;Slebe, F;Stork, D;Caballé-Mestres, A;Berenguer-Llergo, A;Álvarez-Varela, A;Fenderico, N;Novellasdemunt, L;Jiménez-Gracia, L;Sipka, T;Bardia, L;Lorden, P;Colombelli, J;Heyn, H;Trepat, X;Tejpar, S;Sancho, E;Tauriello, DVF;Leedham, S;Attolini, CS;Batlle, E;
PMID: 36352230 | DOI: 10.1038/s41586-022-05402-9

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years<sup>1</sup>. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5<sup>+</sup> stem-like tumour cells<sup>2-4</sup>, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1<sup>high</sup> cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.
Trophoblast organoids as a model for maternal–fetal interactions during human placentation.

Nature.

2018 Nov 28

Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, McWhinnie A, Esposito L, Fernando R, Skelton H, Reimann F, Gribble FM, Sharkey A, Marsh SGE, O’Rahilly S, Hemberger M, Burton GJ, Moffett A.
PMID: 30487605 | DOI: 10.1038/s41586-018-0753-3

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.

Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions

PLoS One

2020 Apr 17

Ambrosini YM, Park Y, Jergens AE, Shin W, Min S, Atherly T, Borcherding DC, Jang J, Allenspach K, Mochel JP, Kim HJ
PMID: 32302323 | DOI: 10.1371/journal.pone.0231423

Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches
Robust Colonic Epithelial Regeneration and Amelioration of Colitis via FZD-Specific Activation of Wnt Signaling

Cellular and molecular gastroenterology and hepatology

2022 May 13

Xie, L;Fletcher, RB;Bhatia, D;Shah, D;Phipps, J;Deshmukh, S;Zhang, H;Ye, J;Lee, S;Le, L;Newman, M;Chen, H;Sura, A;Gupta, S;Sanman, LE;Yang, F;Meng, W;Baribault, H;Vanhove, GF;Yeh, WC;Li, Y;Lu, C;
PMID: 35569814 | DOI: 10.1016/j.jcmgh.2022.05.003

Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts.We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities.In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation.It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.
Enhanced Utilization of Induced Pluripotent Stem Cell–Derived Human Intestinal Organoids Using Microengineered Chips

Cell Mol Gastroenterol Hepatol

2017 Dec 29

Workman MJ, Gleeson J, Troisi EJ, Estrada HQ, Kerns SJ, Hinojosa CD, Hamilton GA, Targan SR, Svendsen CN, Barrett RJ.
PMID: - | DOI: 10.1016/j.jcmgh.2017.12.008

Background and Aims

Human intestinal organoids derived from induced pluripotent stem cells have tremendous potential to elucidate the intestinal epithelium’s role in health and disease, but it is difficult to directly assay these complex structures. This study sought to make this technology more amenable for study by obtaining epithelial cells from induced pluripotent stem cell–derived human intestinal organoids and incorporating them into small microengineered Chips. We then investigated if these cells within the Chip were polarized, had the 4 major intestinal epithelial subtypes, and were biologically responsive to exogenous stimuli.

Methods

Epithelial cells were positively selected from human intestinal organoids and were incorporated into the Chip. The effect of continuous media flow was examined. Immunocytochemistry and in situ hybridization were used to demonstrate that the epithelial cells were polarized and possessed the major intestinal epithelial subtypes. To assess if the incorporated cells were biologically responsive, Western blot analysis and quantitative polymerase chain reaction were used to assess the effects of interferon (IFN)-γ, and fluorescein isothiocyanate–dextran 4 kDa permeation was used to assess the effects of IFN-γ and tumor necrosis factor-α on barrier function.

Results

The optimal cell seeding density and flow rate were established. The continuous administration of flow resulted in the formation of polarized intestinal folds that contained Paneth cells, goblet cells, enterocytes, and enteroendocrine cells along with transit-amplifying and LGR5+ stem cells. Administration of IFN-γ for 1 hour resulted in the phosphorylation of STAT1, whereas exposure for 3 days resulted in a significant upregulation of IFN-γ related genes. Administration of IFN-γ and tumor necrosis factor-α for 3 days resulted in an increase in intestinal permeability.

Conclusions

We demonstrate that the Intestine-Chip is polarized, contains all the intestinal epithelial subtypes, and is biologically responsive to exogenous stimuli. This represents a more amenable platform to use organoid technology and will be highly applicable to personalized medicine and a wide range of gastrointestinal conditions.

Pages

  • « first
  • ‹ previous
  • …
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?