Erjefält, JS;de Souza Xavier Costa, N;Jönsson, J;Cozzolino, O;Dantas, KC;Clausson, CM;Siddhuraj, P;Lindö, C;Alyamani, M;Lombardi, SCFS;Mendroni Júnior, A;Antonangelo, L;Faria, CS;Duarte-Neto, AN;de Almeida Monteiro, RA;Rebello Pinho, JR;Gomes-Gouvêa, MS;Verciano Pereira, R;Monteiro, JS;Setubal, JC;de Oliveira, EP;Theodoro Filho, J;Sanden, C;Orengo, JM;Sleeman, MA;da Silva, LFF;Saldiva, PHN;Dolhnikoff, M;Mauad, T;
PMID: 36027872 | DOI: 10.1016/j.ebiom.2022.104229
Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19.We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed.Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production.Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments.CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.
Motwani, R;Deshmukh, V;Kumar, A;Kumari, C;Raza, K;Krishna, H;
PMID: 35693050 | DOI: 10.53854/liim-3002-1
The mammalian placenta, which is responsible for bonding between the mother and the fetus, is one of the first organs to develop. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has caused a great threat to public health and affected almost all the organs including the placenta. Owing to limited available data on vertical transmission and pathological changes in the placenta of SARS-CoV-2 positive patients, we aim to review and summarize histopathological and ultrastructural changes in the placental tissue following SARS-CoV-2 infection. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guidelines were used for review writing. Multiple studies have reported significant pathological changes in the placental tissue of SARS-CoV-2 positive mothers. On the other hand, some studies have demonstrated either no or very little involvement of the placental tissue. The most common pathological changes reported are fetal and maternal vascular malformation, villitis of unknown etiology, thrombus formation in the intervillous space and sub-chorionic space, and chorangiosis. Reports on vertical transmission are less in number. The observations of this review present a strong base for the pathological involvement of the placenta in SARS-CoV-2 infected mothers. However, a smaller number of original studies have been done until now, and most of them have small sample sizes and lack matched control groups, which are the big limitations for drawing an effective conclusion at this stage. Antenatal care can be improved by a better understanding of the correlation between maternal SARS-CoV-2 infection and placental pathology in COVID-19.
Binding of SARS-CoV-2 to the avb6 Integrins May Promote Severe COVID in Patients with IPF
TP105. TP105 BASIC MECHANISMS OF LUNG INFECTIONS: FROM SARS-COV-2 TO INFLUENZA
Joseph, C;Peacock, T;Calver, J;John, A;Organ, L;Fainberg, H;Porte, J;Mukhopadhyay, S;Barton, L;Stroberg, E;Duval, E;Copin, M;Poissy, J;Steinestel, K;Tatler, A;Barclay, W;Jenkins, G;
| DOI: 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4170
RATIONALE: Patients with idiopathic pulmonary fibrosis (IPF) have worse outcomes following COVID-19. SARSCoV-2 (2019-nCoV) spike protein (S1) harbors an RGD motif in its receptor-binding domain (RBD). Although SARS-CoV-2 is to exploit human Angiotensin Converting Enzyme-2 (ACE2) receptors for cell entry. Single Cell RNA-seq showed that normal lung expresses low levels of ACE2 with very low expression (1.5%) in Alveolar type 2 epithelial cells. It is possible that SARS-CoV-2 needs a cellular co-receptor, which could include integrins, to promote alveolar cell internalization and pneumonitis.METHODS: Solid-phase binding assays were used to investigate S1 binding to ACE2 or αv containing integrins. Pseudovirus entry assays were used to measure the internalization of SARS-CoV-2 into Human embryonic kidney 293T cells expressing different combinations of potential receptors. RNAscope was used to visualize the co-localization of SARS-CoV-2, ACE2, and integrin mRNAs. Immunohistochemistry was used to evaluate the expression of αvβ6 integrins and ACE2 in lung tissue.RESULTS: Binding assays demonstrated that the RGD containing αvβ3 and αvβ6 integrins bound robustly to the SARS-CoV-2 S1 subunit of Spike protein and overexpression of the αvβ6 integrin modestly augments ACE2 mediated SARS-CoV-2 pseudoviral entry into epithelial cells. In COVID-19 damaged lung ACE2 levels are low but the αvβ6 integrin levels are increased in alveolar epithelium whereas both ACE2 and αvβ6 integrin are increased in lung sections from idiopathic pulmonary fibrosis compared with normal lung samples. CONCLUSION: The SARS-CoV-2 S1 subunit can bind αvβ6 integrins augmenting ACE2-dependent internalization of pseudovirus. In IPF patients, ACE2 levels and αvβ6 integrin levels are increased. Increased binding of the SARS-CoV-2 to ACE2 and the αvβ6 integrin within fibrotic lung may explain the increased risk of severe COVID in patients with IPF.
Shanmugaraj, B;Khorattanakulchai, N;Panapitakkul, C;Malla, A;Im-Erbsin, R;Inthawong, M;Sunyakumthorn, P;Hunsawong, T;Klungthong, C;Reed, MC;Kemthong, T;Suttisan, N;Malaivijitnond, S;Srimangkornkaew, P;Klinkhamhom, A;Manopwisedjaroen, S;Thitithanyanont, A;Taychakhoonavudh, S;Phoolcharoen, W;
PMID: 35697573 | DOI: 10.1016/j.vaccine.2022.05.087
Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.
Takada, K;Shimodai-Yamada, S;Suzuki, M;Trinh, Q;Takano, C;Kawakami, K;Asai-Sato, M;Komatsu, A;Okahashi, A;Nagano, N;Misawa, T;Yamaguchi, K;Suzuki, T;Kawana, K;Morioka, I;Yamada, H;Hayakawa, S;Hao, H;Komine-Aizawa, S;
| DOI: 10.1016/j.placenta.2022.07.010
Although SARS-CoV-2 can infect human placental tissue, vertical transmission is rare. Therefore, the placenta may function as a barrier to inhibit viral transmission to the foetus, though the mechanisms remain unclear. In this study, we confirmed the presence of the SARS-CoV-2 genome in human placental tissue by in situ hybridization with antisense probes targeting the spike protein; tissue staining was much lower when using sense probes for the spike protein. To the best of our knowledge, this is the first evidence directly indicating inefficient viral replication in the SARS-CoV-2-infected placenta. Additional studies are required to reveal the detailed mechanisms.
Ortega-de San Luis C, Sanchez-Garcia MA, Nieto-Gonzalez JL, García-Junco-Clemente P, Montero-Sanchez A, Fernandez-Chacon R, Pascual A.
PMID: 30058223 | DOI: 10.1111/acel.12821
The striatum integrates motor behavior using a well-defined microcircuit whose individual components are independently affected in several neurological diseases. The glial cell line-derived neurotrophic factor (GDNF), synthesized by striatal interneurons, and Sonic hedgehog (Shh), produced by the dopaminergic neurons of the substantia nigra (DA SNpc), are both involved in the nigrostriatal maintenance but the reciprocal neurotrophic relationships among these neurons are only partially understood. To define the postnatal neurotrophic connections among fast-spiking GABAergic interneurons (FS), cholinergic interneurons (ACh), and DA SNpc, we used a genetically induced mouse model of postnatal DA SNpc neurodegeneration and separately eliminated Smoothened (Smo), the obligatory transducer of Shh signaling, in striatal interneurons. We show that FS postnatal survival relies on DA SNpc and is independent of Shh signaling. On the contrary, Shh signaling but not dopaminergic striatal innervation is required to maintain ACh in the postnatal striatum. ACh are required for DA SNpc survival in a GDNF-independent manner. These data demonstrate the existence of three parallel but interdependent neurotrophic relationships between SN and striatal interneurons, partially defined by Shh and GDNF. The definition of these new neurotrophic interactions opens the search for new molecules involved in the striatal modulatory circuit maintenance with potential therapeutic value.
Pancani, T;Day, M;Tkatch, T;Wokosin, DL;González-Rodríguez, P;Kondapalli, J;Xie, Z;Chen, Y;Beaumont, V;Surmeier, DJ;
PMID: 36914640 | DOI: 10.1038/s41467-023-36556-3
Huntington's disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in huntingtin. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology are not fully understood. Here, using a male zQ175+/- knock-in mouse model of HD we carry out optogenetic interrogation of intratelencephalic and pyramidal tract synapses with principal striatal spiny projection neurons (SPNs). These studies reveal that the connectivity of intratelencephalic, but not pyramidal tract, neurons with direct and indirect pathway SPNs increased in early symptomatic zQ175+/- HD mice. This enhancement was attributable to reduced pre-synaptic inhibitory control of intratelencephalic terminals by striatal cholinergic interneurons. Lowering mutant huntingtin selectively in striatal cholinergic interneurons with a virally-delivered zinc finger repressor protein normalized striatal acetylcholine release and intratelencephalic functional connectivity, revealing a node in the network underlying corticostriatal pathophysiology in a HD mouse model.
Zhang, C;Wei, B;Liu, Z;Yao, W;Li, Y;Lu, J;Ge, C;Yu, X;Li, D;Zhu, Y;Shang, C;Jin, N;Li, X;
PMID: 36721152 | DOI: 10.1186/s12985-023-01971-x
Coronavirus disease 2019 is a global pandemic caused by SARS-CoV-2. The emergence of its variant strains has posed a considerable challenge to clinical treatment. Therefore, drugs capable of inhibiting SARS-CoV-2 infection, regardless of virus variations, are in urgently need. Our results showed that the endosomal acidification inhibitor, Bafilomycin A1 (Baf-A1), had an inhibitory effect on the viral RNA synthesis of SARS-CoV-2, and its Beta and Delta variants at the concentration of 500 nM. Moreover, the human lung xenograft mouse model was used to investigate the anti-SARS-CoV-2 effect of Baf-A1. It was found that Baf-A1 significantly inhibited SARS-CoV-2 replication in the human lung xenografts by in situ hybridization and RT-PCR assays. Histopathological examination showed that Baf-A1 alleviated SARS-CoV-2-induced diffuse inflammatory infiltration of granulocytes and macrophages and alveolar endothelial cell death in human lung xenografts. In addition, immunohistochemistry analysis indicated that Baf-A1 decreased inflammatory exudation and infiltration in SARS-CoV-2-infected human lung xenografts. Therefore, Baf-A1 may be a candidate drug for SARS-CoV-2 treatment.
Brain : a journal of neurology
Wlaschin, JJ;Donahue, C;Gluski, J;Osborne, JF;Ramos, LM;Silberberg, H;Le Pichon, CE;
PMID: 36342754 | DOI: 10.1093/brain/awac415
Amyotrophic lateral sclerosis or ALS is a devastating and fatal neurodegenerative disease of motor neurons with very few treatment options. We had previously found that motor neuron degeneration in a mouse model of ALS can be delayed by deleting the axon damage sensor MAP3K12 or Dual Leucine Zipper Kinase (DLK)1. However, DLK is also involved in axon regeneration2-5, prompting us to ask whether combining DLK deletion with a way to promote axon regeneration would result in greater motor neuron protection. To achieve this, we used a mouse line that constitutively expresses ATF3, a master regulator of regeneration in neurons6,7. Although there is precedence for each individual strategy in the SOD1G93A mouse model of ALS1,8, these have not previously been combined. By several lines of evidence including motor neuron electrophysiology, histology and behavior, we observed a powerful synergy when combining DLK deletion with ATF3 expression. The combinatorial strategy resulted in significant protection of motor neurons with fewer undergoing cell death, reduced axon degeneration, and preservation of motor function and connectivity to muscle. This study provides a demonstration of the power of combinatorial therapy to treat neurodegenerative disease.
Mao, Q;Chu, S;Shapiro, S;Young, L;Russo, M;De Paepe, ME;
PMID: 34929459 | DOI: 10.1016/j.placenta.2021.12.002
Recent evidence supports the - rare - occurrence of vertical transplacental SARS-CoV-2 transmission. We previously determined that placental expression of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, and associated viral cell entry regulators is upregulated by hypoxia. In the present study, we utilized a clinically relevant model of SARS-CoV-2-associated chronic histiocytic intervillositis/massive perivillous fibrin deposition (CHIV/MPFVD) to test the hypothesis that placental hypoxia may facilitate placental SARS-CoV-2 infection.We performed a comparative immunohistochemical and/or RNAscope in-situ hybridization analysis of carbonic anhydrase IX (CAIX, hypoxia marker), ACE2 and SARS-CoV-2 expression in free-floating versus fibrin-encased chorionic villi in a 20-weeks' gestation placenta with SARS-CoV-2-associated CHIV/MPVFD.The levels of CAIX and ACE2 immunoreactivity were significantly higher in trophoblastic cells of fibrin-encased villi than in those of free-floating villi, consistent with hypoxia-induced ACE2 upregulation. SARS-CoV-2 showed a similar preferential localization to trophoblastic cells of fibrin-encased villi.The localization of SARS-CoV-2 to hypoxic, fibrin-encased villi in this placenta with CHIV/MPVFD suggests placental infection and, therefore, transplacental SARS-CoV-2 transmission may be promoted by hypoxic conditions, mediated by ACE2 and similar hypoxia-sensitive viral cell entry mechanisms. Understanding of a causative link between placental hypoxia and SARS-CoV-2 transmittability may potentially lead to the development of alternative strategies for prevention of intrauterine COVID-19 transmission.
McDonald, JT;Enguita, FJ;Taylor, D;Griffin, RJ;Priebe, W;Emmett, MR;Sajadi, MM;Harris, AD;Clement, J;Dybas, JM;Aykin-Burns, N;Guarnieri, JW;Singh, LN;Grabham, P;Baylin, SB;Yousey, A;Pearson, AN;Corry, PM;Saravia-Butler, A;Aunins, TR;Sharma, S;Nagpal, P;Meydan, C;Foox, J;Mozsary, C;Cerqueira, B;Zaksas, V;Singh, U;Wurtele, ES;Costes, SV;Davanzo, GG;Galeano, D;Paccanaro, A;Meinig, SL;Hagan, RS;Bowman, NM;UNC COVID-19 Pathobiology Consortium, ;Wolfgang, MC;Altinok, S;Sapoval, N;Treangen, TJ;Moraes-Vieira, PM;Vanderburg, C;Wallace, DC;Schisler, JC;Mason, CE;Chatterjee, A;Meller, R;Beheshti, A;
PMID: 34624208 | DOI: 10.1016/j.celrep.2021.109839
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.
Evidence for residual SARS-CoV-2 in glioblastoma tissue of a convalescent patient
Lei, J;Liu, Y;Xie, T;Yao, G;Wang, G;Diao, B;Song, J;
PMID: 33994523 | DOI: 10.1097/WNR.0000000000001654
Since coronavirus disease 2019 (COVID-19) swept all over the world, several studies have shown the susceptibility of a patient with cancer to COVID-19. In this case, the removed glioblastoma multiforme (GBM)-adjacent (GBM-A), GBM-peritumor and GBM-central (GBM-C) tissues from a convalescent patient of COVID-19, who also suffered from glioblastoma meanwhile, together with GBM-A and GBM tissues from a patient without COVID-19 history as negative controls, were used for RNA ISH, electron microscopy observing and immunohistochemical staining of ACE2 and the virus antigen (N protein). The results of RNA ISH, electron microscopy observing showed that SARS-CoV-2 directly infects some cells within human GBM tissues and SARS-CoV-2 in GBM-C tissue still exists even when it is cleared elsewhere. Immunohistochemical staining of ACE2 and N protein showed that the expressions of ACE2 are significantly higher in specimens, including GBM-C tissue from COVID-19 patient than other types of tissue. The unique phenomenon suggests that the surgical protection level should be upgraded even if the patient is in a convalescent period and the pharyngeal swab tests show negative results. Furthermore, more attention should be paid to confirm whether the shelter-like phenomenon happens in other malignancies due to the similar microenvironment and high expression of ACE2 in some malignancies.