Pathogens (Basel, Switzerland)
Valyi-Nagy, T;Fredericks, B;Wilson, J;Shukla, SD;Setty, S;Slavin, KV;Valyi-Nagy, K;
PMID: 37375462 | DOI: 10.3390/pathogens12060772
The mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may spread to the human brain are poorly understood, and the infection of cancer cells in the brain by SARS-CoV-2 in Coronavirus disease 2019 (COVID-19) patients has been the subject of only one previous case report. Here, we report the detection of SARS-CoV-2 RNA by in situ hybridization in lung-cancer cells metastatic to the brain and adjacent brain parenchyma in a 63-year-old male patient with COVID-19. These findings suggest that metastatic tumors may transport the virus from other parts of the body to the brain or may break down the blood-brain barrier to allow for the virus to spread to the brain. These findings confirm and extend previous observations that cancer cells in the brain can become infected by SARS-CoV-2 in patients with COVID-19 and raise the possibility that SARS-CoV-2 can have a direct effect on cancer growth and outcome.
Castro, RW;Lopes, MC;Settlage, RE;Valdez, G;
PMID: 37154159 | DOI: 10.1172/jci.insight.168448
Spinal motor neurons have been implicated in the loss of motor function that occurs with advancing age. However, the cellular and molecular mechanisms that impair the function of these neurons during aging remain unknown. Here, we show that motor neurons do not die in old female and male mice, rhesus monkeys, and humans. Instead, these neurons selectively and progressively shed excitatory synaptic inputs throughout the soma and dendritic arbor during aging. Thus, aged motor neurons contain a motor circuitry with a reduced ratio of excitatory to inhibitory synapses that may be responsible for the diminished ability to activate motor neurons to commence movements. An examination of the motor neuron translatome (ribosomal transcripts) in male and female mice reveals genes and molecular pathways with roles in glia-mediated synaptic pruning, inflammation, axonal regeneration, and oxidative stress that are upregulated in aged motor neurons. Some of these genes and pathways are also found altered in motor neurons affected with amyotrophic lateral sclerosis (ALS) and responding to axotomy, demonstrating that aged motor neurons are under significant stress. Our findings show mechanisms altered in aged motor neurons that could serve as therapeutic targets to preserve motor function during aging.
Dermatology (Basel, Switzerland)
Marzano, AV;Moltrasio, C;Genovese, G;De Andrea, M;Caneparo, V;Vezzoli, P;Morotti, D;Sena, P;Venturini, M;Battocchio, S;Caputo, V;Rizzo, N;Maronese, CA;Venegoni, L;Boggio, FL;Rongioletti, F;Calzavara-Pinton, P;Berti, E;
PMID: 37075721 | DOI: 10.1159/000530746
COronaVIrus Disease 19 (COVID-19) is associated with a wide spectrum of skin manifestations, but SARS-CoV-2 RNA in lesional skin has been demonstrated only in few cases.To demonstrate SARS-CoV-2 presence in skin samples from patients with different COVID-19-related cutaneous phenotypes.Demographic and clinical data from 52 patients with COVID-19-associated cutaneous manifestations were collected. Immunohistochemistry and digital PCR (dPCR) were performed in all skin samples. RNA in situ hybridization (ISH) was used to confirm the presence of SARS-CoV-2 RNA.Twenty out of 52 (38%) patients presented SARS-CoV-2 positivity in the skin. Among these, 10/52 (19%) patients tested positive for spike protein on immunohistochemistry, five of whom had also positive testing on dPCR. Of the latter, one tested positive both for ISH and ACE-2 on immunohistochemistry while another one tested positive for nucleocapsid protein. Twelve patients showed positivity only for nucleocapsid protein on immunohistochemistry.SARS-CoV-2 was detected only in 38% of patients, without any association with a specific cutaneous phenotype, suggesting that the pathophysiology of cutaneous lesions mostly depends on the activation of the immune system. The combination of spike and nucleocapsid immunohistochemistry has higher diagnostic yield than dPCR. Skin persistence of SARS-CoV-2 may depend on timing of skin lesions, viral load and immune response.S. Karger AG, Basel.
Jerome, K;Sattar, S;Mehedi, M;
PMID: 36779029 | DOI: 10.1016/j.mex.2023.102050
Visualizing and quantifying mRNA and its corresponding protein provides a unique perspective of gene expression at a single-molecule level. Here, we describe a method for differentiating primary cells for making airway epithelium and detecting SARS-CoV-2 Spike (S) mRNA and S protein in the paraformaldehyde-fixed paraffin-embedded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected airway epithelium. For simultaneous detection of mRNA and protein in the same cell, we combined two protocols: 1. RNA fluorescence-based in situ hybridization (RNA-FISH) based mRNA detection and 2. fluorescence-based immunohistochemistry (IHC) based protein detection. The detection of mRNA and proteins in the same cell also allows for quantifying them using the open-source software QuPath, which provides an accurate and more straightforward fluorescent-based quantification of mRNA and protein in the microscopic images of the infected cells. Additionally, we can achieve the subcellular distribution of both S mRNA and S protein. This method identifies SARS-CoV-2 S gene products' (mRNA and protein) degree of expression and their subcellular localization in the infected airway epithelium. Advantages of this method include: •Simultaneous detection and quantification of mRNA and protein in the same cell.•Universal use due to the ability to use mRNA-specific primer-probe and protein-specific antibodies.•An open-source software QuPath provides a straightforward fluorescent-based quantification.
Proceedings of the National Academy of Sciences of the United States of America
Caligiuri, SPB;Howe, WM;Wills, L;Smith, ACW;Lei, Y;Bali, P;Heyer, MP;Moen, JK;Ables, JL;Elayouby, KS;Williams, M;Fillinger, C;Oketokoun, Z;Lehmann, VE;DiFeliceantonio, AG;Johnson, PM;Beaumont, K;Sebra, RP;Ibanez-Tallon, I;Kenny, PJ;
PMID: 36346845 | DOI: 10.1073/pnas.2209870119
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the <i>Hhip</i> gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Scandinavian cardiovascular journal : SCJ
Razaghi, A;Szakos, A;Al-Shakarji, R;Björnstedt, M;Szekely, L;
PMID: 35678649 | DOI: 10.1080/14017431.2022.2085320
Objective. Patients with underlying heart diseases have a higher risk of dying from Covid-19. It has also been suggested that Covid-19 affects the heart through myocarditis. Despite the rapidly growing research on the management of Covid-19 associated complications, most of the ongoing research is focused on the respiratory complications of Covid-19, and little is known about the prevalence of myocarditis. Design. This study aimed to characterize myocardial involvement by using a panel of antibodies to detect hypoxic and inflammatory changes and the presence of SARS-CoV-2 proteins in heart tissues obtained during the autopsy procedure of Covid-19 deceased patients. Thirty-seven fatal COVID-19 cases and 21 controls were included in this study. Results. Overall, the Covid-19 hearts had several histopathological changes like the waviness of myocytes, fibrosis, contract band necrosis, infiltration of polymorphonuclear neutrophils, vacuolization, and necrosis of myocytes. In addition, endothelial damage and activation were detected in heart tissue. However, viral replication was not detected using RNA in situ hybridization. Also, lymphocyte infiltration, as a hallmark of myocarditis, was not seen in this study. Conclusion. No histological sign of myocarditis was detected in any of our cases; our findings are thus most congruent with the hypothesis of the presence of a circulating endothelium activating factor such as VEGF, originating outside of the heart, probably from the hypoxic part of the Covid-19 lungs.
Paul, T;Ledderose, S;Bartsch, H;Sun, N;Soliman, S;Märkl, B;Ruf, V;Herms, J;Stern, M;Keppler, OT;Delbridge, C;Müller, S;Piontek, G;Kimoto, YS;Schreiber, F;Williams, TA;Neumann, J;Knösel, T;Schulz, H;Spallek, R;Graw, M;Kirchner, T;Walch, A;Rudelius, M;
PMID: 35332140 | DOI: 10.1038/s41467-022-29145-3
Progressive respiratory failure and hyperinflammatory response is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. Despite mounting evidence of disruption of the hypothalamus-pituitary-adrenal axis in COVID-19, relatively little is known about the tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to adrenal glands and associated changes. Here we demonstrate adrenal viral tropism and replication in COVID-19 patients. Adrenal glands showed inflammation accompanied by inflammatory cell death. Histopathologic analysis revealed widespread microthrombosis and severe adrenal injury. In addition, activation of the glycerophospholipid metabolism and reduction of cortisone intensities were characteristic for COVID-19 specimens. In conclusion, our autopsy series suggests that SARS-CoV-2 facilitates the induction of adrenalitis. Given the central role of adrenal glands in immunoregulation and taking into account the significant adrenal injury observed, monitoring of developing adrenal insufficiency might be essential in acute SARS-CoV-2 infection and during recovery.
Downs, AM;Donsante, Y;Jinnah, HA;Hess, EJ;
PMID: 35314320 | DOI: 10.1016/j.nbd.2022.105699
Trihexyphenidyl (THP), a non-selective muscarinic receptor (mAChR) antagonist, is commonly used for the treatment of dystonia associated with TOR1A, otherwise known as DYT1 dystonia. A better understanding of the mechanism of action of THP is a critical step in the development of better therapeutics with fewer side effects. We previously found that THP normalizes the deficit in striatal dopamine (DA) release in a mouse model of TOR1A dystonia (Tor1a+/ΔE knockin (KI) mice), revealing a plausible mechanism of action for this compound, considering that abnormal DA neurotransmission is consistently associated with many forms of dystonia. However, the mAChR subtype(s) that mediate the rescue of striatal dopamine release remain unclear. In this study we used a combination of pharmacological challenges and cell-type specific mAChR conditional knockout mice of either sex to determine which mAChR subtypes mediate the DA release-enhancing effects of THP. We determined that THP acts in part at M4 mAChR on striatal cholinergic interneurons to enhance DA release in both Tor1a+/+ and Tor1a+/ΔE KI mice. Further, we found that the subtype selective M4 antagonist VU6021625 recapitulates the effects of THP. These data implicate a principal role for M4 mAChR located on striatal cholinergic interneurons in the mechanism of action of THP and suggest that subtype selective M4 mAChR antagonists may be effective therapeutics with fewer side effects than THP for the treatment of TOR1A dystonia.
American Journal of Transplantation
Saharia, KK;Ramelli, SC;Stein, SR;Roder, AE;
| DOI: 10.1016/j.ajt.2022.09.001
Although the risk of SARS-CoV-2 transmission through lung transplantation from acutely infected donors is high, the risks of virus transmission and long-term lung allograft outcomes are not as well described when using pulmonary organs from COVID-19-recovered donors. We describe successful lung transplantation for a COVID-19-related lung injury using lungs from a COVID-19-recovered donor who was retrospectively found to have detectable genomic SARS-CoV-2 RNA in the lung tissue by multiple highly sensitive assays. However, SARS-CoV-2 subgenomic RNA (sgRNA), a marker of viral replication, was not detectable in the donor respiratory tissues. One year after lung transplantation, the recipient has a good functional status, walking 1 mile several times per week without the need for supplemental oxygen and without any evidence of donor-derived SARS-CoV-2 transmission. Our findings highlight the limitations of current clinical laboratory diagnostic assays in detecting the persistence of SARS-CoV-2 RNA in the lung tissue. The persistence of SARS-CoV-2 RNA in the donor tissue did not appear to represent active viral replication via sgRNA testing and, most importantly, did not negatively impact the allograft outcome in the first year after lung transplantation. sgRNA is easily performed and may be a useful assay for assessing viral infectivity in organs from donors with a recent infection.
Pulmonary stromal expansion and intra-alveolar coagulation are primary causes of COVID-19 death
Szekely, L;Bozoky, B;Bendek, M;Ostad, M;Lavignasse, P;Haag, L;Wu, J;Jing, X;Gupta, S;Saccon, E;Sönnerborg, A;Cao, Y;Björnstedt, M;Szakos, A;
PMID: 34056141 | DOI: 10.1016/j.heliyon.2021.e07134
Most COVID-19 victims are old and die from unrelated causes. Here we present twelve complete autopsies, including two rapid autopsies of young patients where the cause of death was COVID-19 ARDS. The main virus induced pathology was in the lung parenchyma and not in the airways. Most coagulation events occurred in the intra-alveolar and not in the intra-vascular space and the few thrombi were mainly composed of aggregated thrombocytes. The dominant inflammatory response was the massive accumulation of CD163 + macrophages and the disappearance of T killer, NK and B-cells. The virus was replicating in the pneumocytes and macrophages but not in bronchial epithelium, endothelium, pericytes or stromal cells. The lung consolidations were produced by a massive regenerative response, stromal and epithelial proliferation and neovascularization. We suggest that thrombocyte aggregation inhibition, angiogenesis inhibition and general proliferation inhibition may have a roll in the treatment of advanced COVID-19 ARDS.
Roczkowsky, A;Limonta, D;Fernandes, JP;Branton, WG;Clarke, M;Hlavay, B;Noyce, RS;Joseph, JT;Ogando, NS;Das, SK;Elaish, M;Arbour, N;Evans, DH;Langdon, K;Hobman, TC;Power, C;
PMID: 37190821 | DOI: 10.1002/ana.26679
Peroxisome injury occurs in the central nervous system (CNS) during multiple virus infections that result in neurological disabilities. We investigated host neuroimmune responses and peroxisome biogenesis factors during SARS-CoV-2 infection using a multiplatform strategy.Brain tissues from COVID-19 (n=12) and other disease control (ODC) (n=12) patients, as well as primary human neural cells and Syrian hamsters, infected with a clinical variant of SARS-CoV-2, were investigated by ddPCR, RT-qPCR and immunodetection methods.SARS-CoV-2 RNA was detected in the CNS of four patients with COVID-19 with viral protein (NSP3 and spike) immunodetection in the brainstem. Olfactory bulb, brainstem, and cerebrum from patients with COVID-19 showed induction of pro-inflammatory transcripts (IL8, IL18, CXCL10, NOD2) and cytokines (GM-CSF and IL-18) compared to CNS tissues from ODC patients (p<0.05). Peroxisome biogenesis factor transcripts (PEX3, PEX5L, PEX11β and PEX14) and proteins (PEX3, PEX14, PMP70) were suppressed in the CNS of COVID-19 patients compared to ODCs (p<0.05). SARS-CoV-2 infection of hamsters revealed viral RNA detection in the olfactory bulb at days 4 and 7 post-infection while inflammatory gene expression was upregulated in the cerebrum of infected animals by day 14 post-infection (p<0.05). Pex3 transcript levels together with catalase and PMP70 immunoreactivity were suppressed in the cerebrum of SARS-CoV-2 infected animals (p<0.05).COVID-19 induced sustained neuroinflammatory responses with peroxisome biogenesis factor suppression despite limited brainstem SARS-CoV-2 neurotropism in humans. These observations offer insights into developing biomarkers and therapies, while also implicating persistent peroxisome dysfunction as a contributor to the neurological post-acute sequelae of COVID-19. This article is protected by
González-Mesa, E;García-Fuentes, E;Carvia-Pontiasec, R;Lavado-Fernández, A;Cuenca-Marín, C;Suárez-Arana, M;Blasco-Alonso, M;Benítez-Lara, B;Mozas-Benítez, L;González-Cazorla, A;Egeberg-Neverdal, H;Jiménez-López, J;
| DOI: 10.3390/diagnostics12020245
(1) Background: Little is known about the effects of SARS-CoV-2 on the placenta, and whether the maternal inflammatory response is transmitted vertically. This research aims to provide information about the effects of SARS-CoV-2 infection on maternal and fetal immunity. (2) Methods: We have studied placental changes and humoral and cellular immunity in maternal and umbilical cord blood (UCB) samples from a group of pregnant women delivering after the diagnosis of SARS-CoV-2 infection during pregnancy. IgG and IgM SARS-CoV-2 antibodies, Interleukin 1b (IL1b), Interleukin 6 (IL6), and gamma-Interferon (IFN-γ), have been studied in the UCB samples. Lymphocyte subsets were studied according to CD3, CD8, CD4, CD34, and invariant natural Killer T cells (iNKT) markers. We used in situ hybridization techniques for the detection of viral RNA in placentas. (3) Results: During the study period, 79 pregnant women and their corresponding newborns were recruited. The main gestational age at the time of delivery was 39.1 weeks (SD 1.3). We did not find traces of the SARS-CoV-2 virus RNA in any of the analyzed placental samples. Detectable concentrations of IgG anti-SARS-CoV-2 antibodies, IL1b, IL6, and IFN-γ, in UCB were found in all cases, but IgM antibodies anti-ARS-CoV-2 were systematically undetectable. We found significant correlations between fetal CD3+ mononuclear cells and UCB IgG concentrations. We also found significant correlations between UCB IgG concentrations and fetal CD3+/CD4+, as well as CD3+/CD8+ T cells subsets. We also discovered that fetal CD3+/CD8+ cell counts were significantly higher in those cases with placental infarctions. (4) Conclusion: we have not verified the placental transfer of SARS-CoV-2. However, we have discovered that a significant immune response is being transmitted to the fetus in cases of SARS-CoV-2 maternal infection.