Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (143)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • (-) Remove SARS-CoV-2 filter SARS-CoV-2 (136)
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (42) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (28) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (17) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (15) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (6) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (3) Apply TBD filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • Covid (113) Apply Covid filter
  • Infectious (39) Apply Infectious filter
  • Inflammation (11) Apply Inflammation filter
  • Neuroscience (9) Apply Neuroscience filter
  • Immunotherapy (8) Apply Immunotherapy filter
  • Reproduction (7) Apply Reproduction filter
  • Infectious Disease (4) Apply Infectious Disease filter
  • Other: Methods (4) Apply Other: Methods filter
  • Vaccines (4) Apply Vaccines filter
  • Vaccine (3) Apply Vaccine filter
  • Covid-19 (2) Apply Covid-19 filter
  • Heart Disease (2) Apply Heart Disease filter
  • Long Covid (2) Apply Long Covid filter
  • Lung (2) Apply Lung filter
  • Neuroinflammation (2) Apply Neuroinflammation filter
  • Adrenal (1) Apply Adrenal filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cancer (1) Apply Cancer filter
  • chimeric VLP-based Vaccine (1) Apply chimeric VLP-based Vaccine filter
  • COVID-19-associated pulmonary aspergillosis (1) Apply COVID-19-associated pulmonary aspergillosis filter
  • Development (1) Apply Development filter
  • Heart (1) Apply Heart filter
  • Immunothearpy (1) Apply Immunothearpy filter
  • Infammation (1) Apply Infammation filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectiouse Disease: Flu (1) Apply Infectiouse Disease: Flu filter
  • Influenza (1) Apply Influenza filter
  • Long-Covid (1) Apply Long-Covid filter
  • Organ transplant (1) Apply Organ transplant filter
  • pharmacotherapy (1) Apply pharmacotherapy filter
  • Respiratory Disease (1) Apply Respiratory Disease filter
  • Sex Differences (1) Apply Sex Differences filter
  • Stem cell (1) Apply Stem cell filter
  • Stem Cells (1) Apply Stem Cells filter
  • Vaccine-associated enhanced respiratory disease (1) Apply Vaccine-associated enhanced respiratory disease filter
  • Vaccines Associated Hepatitis (1) Apply Vaccines Associated Hepatitis filter

Category

  • Publications (143) Apply Publications filter
SARS-CoV-2 Infection in Unvaccinated High Risk Pregnant Women in the Bronx, NY is Associated with Placental Abnormalities, Shorter Gestation and Lower Apgar Scores

Preprint

2022 Sep 06

Reznik, S;Vuguin, P;Khoury, R;Loudig, O;Balakrashnian, R;Fineberg, S;Hughes, F;Harigopal, M;Charron, M;
| DOI: 10.20944/preprints202209.0063.v1

. Babies born to severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) infected mothers are at greater risk for perinatal morbidity and more likely to receive a neurodevelopmental diagnosis in the first year of life. However, the effect of maternal infection on placental function and neonatal outcomes varies depending upon the patient population. We set out to test our hypothesis that maternal SARS-CoV-2 infection in our underserved, socioeconomically disadvantaged, predominantly African American and Latina population in the Bronx, NY would have effects evident at birth. Fifty-five SARS-CoV-2 positive and 61 negative third trimester patients were randomly selected from Montefiore Medical Center (MMC), Bronx, NY. In addition, two positive cases from Yale New Haven Hospital, CT were included as controls. All 55 placentas delivered by SARS-CoV-2 positive mothers were uninfected by the virus, based on immunohistochemistry, in-situ hybridization, and qPCR analysis. However, placental villous infarcts, mild preeclampsia, shortened gestational periods and lower Apgar scores were observed in the infected cases. These findings suggest that even without entering the placenta, SARS-CoV-2 can affect various systemic pathways culminating in altered placental development and function, which may adversely affect the fetus, especially in a high-risk patient population such as ours. These results underline the importance of vaccination among pregnant women, particularly in low resource areas.
The differential immune response in mild versus fatal SARS-CoV2 infection

Annals of diagnostic pathology

2022 Sep 02

Suster, D;Tili, E;Nuovo, GJ;
PMID: 36113259 | DOI: 10.1016/j.anndiagpath.2022.152032

This study compared the immune response in mild versus fatal SARS-CoV2 infection. Forty nasopharyngeal swabs with either productive mild infection (n = 20) or negative for SARS-CoV2 (n = 20) were tested along with ten lung sections from people who died of COVID-19 which contained abundant SARS-CoV2 and ten controls. There was a 25-fold increase in the CD3+T cell numbers in the viral positive nasopharyngeal swabs compared to the controls (p < 0.001) and no change in the CD3+T cell count in the fatal COVID-19 lungs versus the controls. CD11b + and CD206+ macrophage counts were significantly higher in the mild versus fatal disease (p = 0.002). In situ analysis for SARS-CoV2 RNA found ten COVID-19 lung sections that had no/rare detectable virus and also lacked the microangiopathy typical of the viral positive sections. These viral negative lung tissues when compared to the viral positive lung samples showed a highly significant increase in CD3+ and CD8 T cells (p < 0.001), equivalent numbers of CD163+ cells, and significantly less PDL1, CD11b and CD206+ cells (p = 0.002). It is concluded that mild SARS-CoV2 infection is marked by a much stronger CD3/CD8 T cell, CD11b, and CD206 macrophage response than the fatal lung disease where viral RNA is abundant.
Antemortem vs Postmortem Histopathologic and Ultrastructural Findings in Paired Transbronchial Biopsy Specimens and Lung Autopsy Samples From Three Patients With Confirmed SARS-CoV-2

American journal of clinical pathology

2021 Aug 31

Gagiannis, D;Umathum, VG;Bloch, W;Rother, C;Stahl, M;Witte, HM;Djudjaj, S;Boor, P;Steinestel, K;
PMID: 34463314 | DOI: 10.1093/ajcp/aqab087

Respiratory failure is the major cause of death in coronavirus disease 2019 (COVID-19). Autopsy-based reports describe diffuse alveolar damage (DAD), organizing pneumonia, and fibrotic change, but data on early pathologic changes and during progression of the disease are rare.We prospectively enrolled three patients with COVID-19 and performed full clinical evaluation, including high-resolution computed tomography. We took transbronchial biopsy (TBB) specimens at different time points and autopsy tissue samples for histopathologic and ultrastructural evaluation after the patients' death.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was confirmed by reverse transcription polymerase chain reaction and/or fluorescence in situ hybridization in all TBBs. Lung histology showed reactive pneumocytes and capillary congestion in one patient who died shortly after hospital admission with detectable virus in one of two lung autopsy samples. SARS-CoV-2 was detected in two of two autopsy samples from another patient with a fulminant course and very short latency between biopsy and autopsy, showing widespread organizing DAD. In a third patient with a prolonged course, autopsy samples showed extensive fibrosis without detectable virus.We report the course of COVID-19 in paired biopsy specimens and autopsies, illustrating vascular, organizing, and fibrotic patterns of COVID-19-induced lung injury. Our results suggest an early spread of SARS-CoV-2 from the upper airways to the lung periphery with diminishing viral load during disease.
SARS-CoV-2 infection in the mouse olfactory system

Cell discovery

2021 Jul 06

Ye, Q;Zhou, J;He, Q;Li, RT;Yang, G;Zhang, Y;Wu, SJ;Chen, Q;Shi, JH;Zhang, RR;Zhu, HM;Qiu, HY;Zhang, T;Deng, YQ;Li, XF;Liu, JF;Xu, P;Yang, X;Qin, CF;
PMID: 34230457 | DOI: 10.1038/s41421-021-00290-1

SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice. The sustentacular cells and Bowman's gland cells in the OE were identified as the major target cells of SARS-CoV-2 before invasion into olfactory sensory neurons (OSNs). Remarkably, SARS-CoV-2 infection triggers massive cell death and immune cell infiltration and directly impairs the uniformity of the OE structure. Combined transcriptomic and quantitative proteomic analyses revealed the induction of antiviral and inflammatory responses, as well as the downregulation of olfactory receptor (OR) genes in the OE from the infected animals. Overall, our mouse model recapitulates olfactory dysfunction in COVID-19 patients and provides critical clues for understanding the physiological basis for extrapulmonary manifestations of COVID-19.
Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19

Cellular and molecular life sciences : CMLS

2022 Jun 16

Zhu, A;Real, F;Capron, C;Rosenberg, AR;Silvin, A;Dunsmore, G;Zhu, J;Cottoignies-Callamarte, A;Massé, JM;Moine, P;Bessis, S;Godement, M;Geri, G;Chiche, JD;Valdebenito, S;Belouzard, S;Dubuisson, J;Lorin de la Grandmaison, G;Chevret, S;Ginhoux, F;Eugenin, EA;Annane, D;Bordé, EC;Bomsel, M;
PMID: 35708858 | DOI: 10.1007/s00018-022-04318-x

SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2  alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.
The severity of SARS-CoV-2 infection in K18-hACE2 mice is attenuated by a novel steroid-derivative in a gender-specific manner

British journal of pharmacology

2023 May 31

Gupte, SA;Bakshi, CS;Blackham, E;Duhamel, GE;Jordan, A;Salgame, P;D'silva, M;Khan, MY;Nadler, J;Gupte, R;
PMID: 37259182 | DOI: 10.1111/bph.16155

COVID-19 infections caused by SARS-CoV-2 disseminate through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research. In this study, we investigated the effect of N-Ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl] urea (NEOU), a novel 17α-ketosteroid derivative, on the severity of COVID-19 infections.Studies were conducted in SARS-CoV-2-infected K18-hACE2 mice.SARS-CoV-2-infected K18-hACE2 mice developed severe inflammatory crises and immune responses along with up-regulation of genes in associated signaling pathways in male more than female mice. Notably, SARS-CoV-2 infection down-regulated genes encoding drug metabolizing cytochrome P450 enzymes in male but not female mice. Treatment with NEOU (1 mg/kg/day) 24 or 72 h post-viral infection alleviated lung injury by decreasing expression of genes encoding inflammatory cytokines and chemokines while increasing expression of genes encoding immunoglobins. In situ hybridization using RNA scope probes and immunohistochemical assays revealed that NEOU increased resident CD169+ immunoregulatory macrophages and IBA-1 immunoreactive macrophage-dendritic cells within alveolar spaces in the lungs of infected mice. Consequentially, NEOU reduced morbidity more prominently in male than female mice. However, NEOU increased median survival time and accelerated recovery from infection by 6 days in both males and females.These findings demonstrate that SARS-CoV-2 exhibits gender bias by differentially regulating genes encoding inflammatory cytokines, immunogenic factors, and drug-metabolizing enzymes, in male versus female mice. Most importantly, we identified a novel 17α-ketosteroid that reduces the severity of COVID-19 infection and could be beneficial for reducing impact of COVID-19.This article is protected by
Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2

Research square

2022 Feb 24

Kawaoka, Y;Uraki, R;Kiso, M;Iida, S;Imai, M;Takashita, E;Kuroda, M;Halfmann, P;Loeber, S;Maemura, T;Yamayoshi, S;Fujisaki, S;Wang, Z;Ito, M;Ujie, M;Iwatsuki-Horimoto, K;Furusawa, Y;Wright, R;Chong, Z;Ozono, S;Yasuhara, A;Ueki, H;Sakai, Y;Li, R;Liu, Y;Larson, D;Koga, M;Tsutsumi, T;Adachi, E;Saito, M;Yamamoto, S;Matsubara, S;Hagihara, M;Mitamura, K;Sato, T;Hojo, M;Hattori, SI;Maeda, K;Okuda, M;Murakami, J;Duong, C;Godbole, S;Douek, D;Watanabe, S;Ohmagari, N;Yotsuyanagi, H;Diamond, M;Hasegawa, H;Mitsuya, H;Suzuki, T;
PMID: 35233565 | DOI: 10.21203/rs.3.rs-1375091/v1

The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.
MVA vector expression of SARS-CoV-2 spike protein and protection of adult Syrian hamsters against SARS-CoV-2 challenge

NPJ vaccines

2021 Dec 03

Meseda, CA;Stauft, CB;Selvaraj, P;Lien, CZ;Pedro, C;Nuñez, IA;Woerner, AM;Wang, TT;Weir, JP;
PMID: 34862398 | DOI: 10.1038/s41541-021-00410-8

Numerous vaccine candidates against SARS-CoV-2, the causative agent of the COVID-19 pandemic, are under development. The majority of vaccine candidates to date are designed to induce immune responses against the viral spike (S) protein, although different forms of S antigen have been incorporated. To evaluate the yield and immunogenicity of different forms of S, we constructed modified vaccinia virus Ankara (MVA) vectors expressing full-length S (MVA-S), the RBD, and soluble S ectodomain and tested their immunogenicity in dose-ranging studies in mice. All three MVA vectors induced spike-specific immunoglobulin G after one subcutaneous immunization and serum titers were boosted following a second immunization. The MVA-S and MVA-ssM elicited the strongest neutralizing antibody responses. In assessing protective efficacy, MVA-S-immunized adult Syrian hamsters were challenged with SARS-CoV-2 (USA/WA1/2020). MVA-S-vaccinated hamsters exhibited less severe manifestations of atypical pneumocyte hyperplasia, hemorrhage, vasculitis, and especially consolidation, compared to control animals. They also displayed significant reductions in gross pathology scores and weight loss, and a moderate reduction in virus shedding was observed post challenge in nasal washes. There was evidence of reduced viral replication by in situ hybridization, although the reduction in viral RNA levels in lungs and nasal turbinates did not reach significance. Taken together, the data indicate that immunization with two doses of an MVA vector expressing SARS-CoV-2 S provides protection against a stringent SARS-CoV-2 challenge of adult Syrian hamsters, reaffirm the utility of this animal model for evaluating candidate SARS-CoV-2 vaccines, and demonstrate the value of an MVA platform in facilitating vaccine development against SARS-CoV-2.
Detection of SARS-CoV-2 RNA by In Situ Hybridization in Lung-Cancer Cells Metastatic to Brain and in Adjacent Brain Parenchyma

Pathogens (Basel, Switzerland)

2023 May 29

Valyi-Nagy, T;Fredericks, B;Wilson, J;Shukla, SD;Setty, S;Slavin, KV;Valyi-Nagy, K;
PMID: 37375462 | DOI: 10.3390/pathogens12060772

The mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may spread to the human brain are poorly understood, and the infection of cancer cells in the brain by SARS-CoV-2 in Coronavirus disease 2019 (COVID-19) patients has been the subject of only one previous case report. Here, we report the detection of SARS-CoV-2 RNA by in situ hybridization in lung-cancer cells metastatic to the brain and adjacent brain parenchyma in a 63-year-old male patient with COVID-19. These findings suggest that metastatic tumors may transport the virus from other parts of the body to the brain or may break down the blood-brain barrier to allow for the virus to spread to the brain. These findings confirm and extend previous observations that cancer cells in the brain can become infected by SARS-CoV-2 in patients with COVID-19 and raise the possibility that SARS-CoV-2 can have a direct effect on cancer growth and outcome.
Single-Molecule Fluorescence In Situ Hybridization for Spatial Detection of mRNAs in Sections of Mammalian Testes

Methods in molecular biology (Clifton, N.J.)

2023 May 30

Diaz, VD;Hermann, BP;
PMID: 37249865 | DOI: 10.1007/978-1-0716-3139-3_3

Single-molecule fluorescence in situ hybridization (smFISH) enables the detection and localization of individual mRNAs in tissue sections with single-molecule resolution while preserving spatial context, and thus, is a useful tool for examining gene expression in biological systems. In particular, the growing reliance on single-cell RNA sequencing (scRNA-seq) to explore cellular heterogeneity has reinvigorated this approach as a validation tool to spatially re-map mRNA expression patterns described in isolated cells to their parent tissue. While use of antibody-based methods, such as indirect immunofluorescence (IIF), remain popular as validation strategies, smFISH often affords superior specificity and maintains congruency with scRNA-seq. Here, we present a detailed protocol that combines multiplexed smFISH using the RNAscope approach with IIF to co-visualize mRNAs and proteins within sections of mouse testes. We provide step-by-step guidelines from testis preparation through visualization that enables mapping of combinations of up to four mRNA/protein targets in frozen sections on the RNAscope platform.
SARS-CoV-2 detection by digital polymerase chain reaction and immunohistochemistry in skin biopsies from 52 patients with different COVID-19-associated cutaneous phenotypes

Dermatology (Basel, Switzerland)

2023 Apr 19

Marzano, AV;Moltrasio, C;Genovese, G;De Andrea, M;Caneparo, V;Vezzoli, P;Morotti, D;Sena, P;Venturini, M;Battocchio, S;Caputo, V;Rizzo, N;Maronese, CA;Venegoni, L;Boggio, FL;Rongioletti, F;Calzavara-Pinton, P;Berti, E;
PMID: 37075721 | DOI: 10.1159/000530746

COronaVIrus Disease 19 (COVID-19) is associated with a wide spectrum of skin manifestations, but SARS-CoV-2 RNA in lesional skin has been demonstrated only in few cases.To demonstrate SARS-CoV-2 presence in skin samples from patients with different COVID-19-related cutaneous phenotypes.Demographic and clinical data from 52 patients with COVID-19-associated cutaneous manifestations were collected. Immunohistochemistry and digital PCR (dPCR) were performed in all skin samples. RNA in situ hybridization (ISH) was used to confirm the presence of SARS-CoV-2 RNA.Twenty out of 52 (38%) patients presented SARS-CoV-2 positivity in the skin. Among these, 10/52 (19%) patients tested positive for spike protein on immunohistochemistry, five of whom had also positive testing on dPCR. Of the latter, one tested positive both for ISH and ACE-2 on immunohistochemistry while another one tested positive for nucleocapsid protein. Twelve patients showed positivity only for nucleocapsid protein on immunohistochemistry.SARS-CoV-2 was detected only in 38% of patients, without any association with a specific cutaneous phenotype, suggesting that the pathophysiology of cutaneous lesions mostly depends on the activation of the immune system. The combination of spike and nucleocapsid immunohistochemistry has higher diagnostic yield than dPCR. Skin persistence of SARS-CoV-2 may depend on timing of skin lesions, viral load and immune response.S. Karger AG, Basel.
Simultaneous detection and quantification of spike mRNA and protein in SARS-CoV-2 infected airway epithelium

MethodsX

2023 Feb 03

Jerome, K;Sattar, S;Mehedi, M;
PMID: 36779029 | DOI: 10.1016/j.mex.2023.102050

Visualizing and quantifying mRNA and its corresponding protein provides a unique perspective of gene expression at a single-molecule level. Here, we describe a method for differentiating primary cells for making airway epithelium and detecting SARS-CoV-2 Spike (S) mRNA and S protein in the paraformaldehyde-fixed paraffin-embedded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected airway epithelium. For simultaneous detection of mRNA and protein in the same cell, we combined two protocols: 1. RNA fluorescence-based in situ hybridization (RNA-FISH) based mRNA detection and 2. fluorescence-based immunohistochemistry (IHC) based protein detection. The detection of mRNA and proteins in the same cell also allows for quantifying them using the open-source software QuPath, which provides an accurate and more straightforward fluorescent-based quantification of mRNA and protein in the microscopic images of the infected cells. Additionally, we can achieve the subcellular distribution of both S mRNA and S protein. This method identifies SARS-CoV-2 S gene products' (mRNA and protein) degree of expression and their subcellular localization in the infected airway epithelium. Advantages of this method include: •Simultaneous detection and quantification of mRNA and protein in the same cell.•Universal use due to the ability to use mRNA-specific primer-probe and protein-specific antibodies.•An open-source software QuPath provides a straightforward fluorescent-based quantification.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?