Shi X, Wu S, Sun J, Liu Y, Zeng X, Liang Z.
PMID: 28387300 | DOI: 10.1038/srep46209
Lung adenosquamous cell carcinomas (ASCs) is a rare variant of NSCLC with a poorer prognosis and fewer treatment option than the more common variants. PD-L1 expression is reported to be the predictor of clinical response in trials of NSCLC. In our study, PD-L1 expression was evaluated via immunohistochemistry using a specific monoclonal antibody (SP263), and PD-L1 mRNA expression was evaluated via in situ hybridization. This study included 51 ASCs, 133 lung adenocarcinomas, and 83 lung squamous cell carcinomas (SCC). Similar results were obtained for PD-L1 expression measured at the mRNA and protein level (k coefficient, 0.851, P = 1.000). PD-L1 expression was significantly higher in the squamous versus glandular component of the 36 ASCs in which the components were analyzed separately. The PD-L1 expression rate was similar in the squamous cell component of ASCs and lung SCC (38.89% vs. 28.92%, P = 0.293), so does the adenocarcinoma component of ASCs and lung adenocarcinomas (11.11% vs 13.53%, P = 1.000). PD-L1 expression correlated significantly with lymphovascular invasion (P = 0.016), but not with EGFR, KRAS, and ALK mutations in lung ASCs. Anit-PD-L1 is a promising treatment option in lung ASC cases in which PD-L1 upregulated and EGFR mutations are present.
Stein LM, Lhamo R, Cao A, Workinger J, Tinsley I, Doyle RP, Grill HJ, Hermann GE, Rogers RC, Hayes MR
PMID: 32152264 | DOI: 10.1038/s41398-020-0767-0
Previous studies identify a role for hypothalamic glia in energy balance regulation; however, a narrow hypothalamic focus provides an incomplete understanding of how glia throughout the brain respond to and regulate energy homeostasis. We examined the responses of glia in the dorsal vagal complex (DVC) to the adipokine leptin and high fat diet-induced obesity. DVC astrocytes functionally express the leptin receptor; in vivo pharmacological studies suggest that DVC astrocytes partly mediate the anorectic effects of leptin in lean but not diet-induced obese rats. Ex vivo calcium imaging indicated that these changes were related to a lower proportion of leptin-responsive cells in the DVC of obese versus lean animals. Finally, we investigated DVC microglia and astroglia responses to leptin and energy balance dysregulation in vivo: obesity decreased DVC astrogliosis, whereas the absence of leptin signaling in Zucker rats was associated with extensive astrogliosis in the DVC and decreased hypothalamic micro- and astrogliosis. These data uncover a novel functional heterogeneity of astrocytes in different brain nuclei of relevance to leptin signaling and energy balance regulation
PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity
Qu, S;Jiao, Z;Lu, G;Yao, B;Wang, T;Rong, W;Xu, J;Fan, T;Sun, X;Yang, R;Wang, J;Yao, Y;Xu, G;Yan, X;Wang, T;Liang, H;Zen, K;
PMID: 33849634 | DOI: 10.1186/s13059-021-02331-0
Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear. Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity. In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.
Xue T, Wang WG, Zhou XY, Li XQ.
PMID: - | DOI: 10.1016/j.pathol.2018.08.011
Summary Programmed cell death ligand 1 (PD-L1) is upregulated in various types of haematological malignancies and is associated with immunosuppression. This study aimed to investigate the expression pattern of PD-L1 in Epstein–Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL). We retrospectively analysed clinicopathological characteristics in 30 cases of EBV-positive DLBCL and immunohistochemically evaluated the level of membrane bound PD-L1 protein. Twenty-eight cases expressed PD-L1 protein 15 of which showed an intense positive staining. In addition, we investigated the relationships between PD-L1 protein and PD-L1 mRNA and MYC, respectively. The expression level of PD-L1 protein was not fully parallel with PD-L1 mRNA, and no significant correlation was observed between PD-L1 protein and MYC. Notably, PD-L1 mRNA was at a low dosage, which indicated that there might be other mechanisms inducing the overexpression of membrane bound PD-L1 protein apart from genetic alterations. Furthermore, the low expression level of MYC may not interfere with the PD-L1 protein expression in EBV-positive DLBCL. In conclusion, overexpression of PD-L1 protein can be observed in EBV-positive DLBCL, and the level was non-parallel with both PD-L1 mRNA and MYC. Moreover, we emphasise that immunohistochemistry is a clinically reasonable method for screening formalin fixed, paraffin embedded (FFPE) tumour samples in this entity.
Qian, X;DeGennaro, EM;Talukdar, M;Akula, SK;Lai, A;Shao, DD;Gonzalez, D;Marciano, JH;Smith, RS;Hylton, NK;Yang, E;Bazan, JF;Barrett, L;Yeh, RC;Hill, RS;Beck, SG;Otani, A;Angad, J;Mitani, T;Posey, JE;Pehlivan, D;Calame, D;Aydin, H;Yesilbas, O;Parks, KC;Argilli, E;England, E;Im, K;Taranath, A;Scott, HS;Barnett, CP;Arts, P;Sherr, EH;Lupski, JR;Walsh, CA;
PMID: 36228617 | DOI: 10.1016/j.devcel.2022.09.011
Kinesins are canonical molecular motors but can also function as modulators of intracellular signaling. KIF26A, an unconventional kinesin that lacks motor activity, inhibits growth-factor-receptor-bound protein 2 (GRB2)- and focal adhesion kinase (FAK)-dependent signal transduction, but its functions in the brain have not been characterized. We report a patient cohort with biallelic loss-of-function variants in KIF26A, exhibiting a spectrum of congenital brain malformations. In the developing brain, KIF26A is preferentially expressed during early- and mid-gestation in excitatory neurons. Combining mice and human iPSC-derived organoid models, we discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Our findings illustrate the pathogenesis of KIF26A loss-of-function variants and identify the surprising versatility of this non-motor kinesin.
Guo L, Li W, Zhu X, Ling Y, Qiu T, Dong L, Fang Y, Yang H, Ying J.
PMID: 27390646 | DOI: 10.1186/s40064-016-2513-x
Abstract
PURPOSE:
To estimate the therapeutic potential of PD-L1 inhibition in breast cancer, we evaluated the prevalence and significance of PD-L1 protein expression with a validated antibody and CD274 gene alternation in a large cohort of triple negative breast cancer (TNBC) and correlated with clinicopathological data and patients overall survival.
METHODS:
Immunohistochemistry and in situ mRNA hybridization was used to detect PD-L1 protein and mRNA expression in tumor tissues from 183 TNBC patients respectively. Fluorescence in situ hybridization analysis was performed on PD-L1 strong expression samples to assess copy number on chromosome 9p24.1 of CD274 gene.
RESULTS:
Expression of PD-L1 by immune cells was observed in 4.9 % of TNBC, while expression by tumor cells accounted for 8.7 %. There was a high concordance in PD-L1 protein expression and PDL1 mRNA expression. Samples with PD-L1 strong expression were found to have a CD274 gene copy number gain. PD-L1 expression was correlated with higher tumor grade, but was independent of menopausal status, lymph nodes metastasis, histological subtype and tumor size. In addition, we used precise stratification of PD-L1 expression on tumor or immune cells of certain breast cancer subtype and suggested that patients with PD-L1 expression in basal-like tumors by immune cells or with CD274 gene copy number gain had a longer disease-specific overall survival.
CONCLUSIONS:
Our findings may promote the more precise analysis of PD-L1 expression in breast cancer and aid the selection of patients who may benefit from immune therapy.
Licenziato, L;Minoli, L;Ala, U;Marconato, L;Fanelli, A;Giannuzzi, D;De Maria, R;Iussich, S;Orlando, G;Bertoni, F;Aresu, L;
PMID: 36951124 | DOI: 10.1177/03009858231162209
Canine diffuse large B-cell lymphoma (cDLBCL) is characterized by high mortality and clinical heterogeneity. Although chemo-immunotherapy improves outcome, treatment response remains mainly unpredictable. To identify a set of immune-related genes aberrantly regulated and impacting the prognosis, we explored the immune landscape of cDLBCL by NanoString. The immune gene expression profile of 48 fully clinically characterized cDLBCLs treated with chemo-immunotherapy was analyzed with the NanoString nCounter Canine IO Panel using RNA extracted from tumor tissue paraffin blocks. A Cox proportional-hazards model was used to design a prognostic gene signature. The Cox model identified a 6-gene signature (IL2RB, BCL6, TXK, C2, CDKN2B, ITK) strongly associated with lymphoma-specific survival, from which a risk score was calculated. Dogs were assigned to high-risk or low-risk groups according to the median score. Thirty-nine genes were differentially expressed between the 2 groups. Gene set analysis highlighted an upregulation of genes involved in complement activation, cytotoxicity, and antigen processing in low-risk dogs compared with high-risk dogs, whereas genes associated with cell cycle were downregulated in dogs with a lower risk. In line with these results, cell type profiling suggested the abundance of natural killer and CD8+ cells in low-risk dogs compared with high-risk dogs. Furthermore, the prognostic power of the risk score was validated in an independent cohort of cDLBCL. In conclusion, the 6-gene-derived risk score represents a robust biomarker in predicting the prognosis in cDLBCL. Moreover, our results suggest that enhanced tumor antigen recognition and cytotoxic activity are crucial in achieving a more effective response to chemo-immunotherapy.
Filley A, Henriquez M, Bhowmik T, Tewari BN, Rao X, Wan J, Miller MA, Liu Y, Bentley RT, Dey M.
PMID: 29330750 | DOI: 10.1007/s11060-018-2753-4
Malignant glioma (MG), the most common primary brain tumor in adults, is extremely aggressive and uniformly fatal. Several treatment strategies have shown significant preclinical promise in murine models of glioma; however, none have produced meaningful clinicalresponses in human patients. We hypothesize that introduction of an additional preclinical animal model better approximating the complexity of human MG, particularly in interactions with host immune responses, will bridge the existing gap between these two stages of testing. Here, we characterize the immunologic landscape and gene expression profiles of spontaneous canine glioma and evaluate its potential for serving as such a translational model. RNA in situ hybridization, flowcytometry, and RNA sequencing were used to evaluate immune cell presence and gene expression in healthy and glioma-bearing canines. Similar to human MGs, canine gliomas demonstrated increased intratumoral immune cell infiltration (CD4+, CD8+ and CD4+Foxp3+ T cells). The peripheral blood of glioma-bearing dogs also contained a relatively greater proportion of CD4+Foxp3+ regulatory T cells and plasmacytoid dendritic cells. Tumors were strongly positive for PD-L1 expression and glioma-bearing animals also possessed a greater proportion of immune cells expressing the immune checkpoint receptors CTLA-4 and PD-1. Analysis of differentially expressed genes in our canine populations revealed several genetic changes paralleling those known to occur in human disease. Naturally occurring canine glioma has many characteristics closely resembling human disease, particularly with respect to genetic dysregulation and host immune responses to tumors, supporting its use as a translational model in the preclinical testing of prospective anti-glioma therapies proven successful in murine studies.
Zhu H, Meissner LE, Byrnes C, Tuymetova G, Tifft CJ, Proia RL
PMID: 32179479 | DOI: 10.1016/j.isci.2020.100957
The SUSD4 (Sushi domain-containing protein 4) gene encodes a complement inhibitor that is frequently deleted in 1q41q42 microdeletion syndrome, a multisystem congenital disorder that includes neurodevelopmental abnormalities. To understand SUSD4's role in the mammalian nervous system, we analyzed Susd4 knockout (KO) mice. Susd4 KO mice exhibited significant defects in motor performance and significantly higher levels of anxiety-like behaviors. Susd4 KO brain had abnormal "hairy" basket cells surrounding Purkinje neurons within the cerebellum and significantly reduced dendritic spine density in hippocampal pyramidal neurons. Neurons and oligodendrocyte lineage cells of wild-type mice were found to express Susd4 mRNA. Protein expression of the complement component C1q was increased in the brains of Susd4 KO mice. Our data indicate that SUSD4 plays an important role in neuronal functions, possibly via the complement pathway, and that SUSD4 deletion may contribute to the nervous system abnormalities in patients with 1q41q42 deletions
Nuclear isoform of FGF13 regulates post-natal neurogenesis in the hippocampus through an epigenomic mechanism
Yang, QQ;Zhai, YQ;Wang, HF;Cai, YC;Ma, XY;Yin, YQ;Li, YD;Zhou, GM;Zhang, X;Hu, G;Zhou, JW;
PMID: 34010636 | DOI: 10.1016/j.celrep.2021.109127
The hippocampus is one of two niches in the mammalian brain with persistent neurogenesis into adulthood. The neurogenic capacity of hippocampal neural stem cells (NSCs) declines with age, but the molecular mechanisms of this process remain unknown. In this study, we find that fibroblast growth factor 13 (FGF13) is essential for the post-natal neurogenesis in mouse hippocampus, and FGF13 deficiency impairs learning and memory. In particular, we find that FGF13A, the nuclear isoform of FGF13, is involved in the maintenance of NSCs and the suppression of neuronal differentiation during post-natal hippocampal development. Furthermore, we find that FGF13A interacts with ARID1B, a unit of Brahma-associated factor chromatin remodeling complex, and suppresses the expression of neuron differentiation-associated genes through chromatin modification. Our results suggest that FGF13A is an important regulator for maintaining the self-renewal and neurogenic capacity of NSCs in post-natal hippocampus, revealing an epigenomic regulatory function of FGFs in neurogenesis.
Sodium leak channel contributes to neuronal sensitization in neuropathic pain
Zhang, D;Zhao, W;Liu, J;Ou, M;Liang, P;Li, J;Chen, Y;Liao, D;Bai, S;Shen, J;Chen, X;Huang, H;Zhou, C;
PMID: 33766679 | DOI: 10.1016/j.pneurobio.2021.102041
Neuropathic pain affects up to 10% of the total population and no specific target is ideal for therapeutic need. The sodium leak channel (NALCN), a non-selective cation channel, mediates the background Na+ leak conductance and controls neuronal excitability and rhythmic behaviors. Here, we show that increases of NALCN expression and function in dorsal root ganglion (DRG) and dorsal spinal cord contribute to chronic constriction injury (CCI)-induced neuropathic pain in rodents. NALCN current and neuronal excitability in acutely isolated DRG neurons and spinal cord slices of rats were increased after CCI which were decreased to normal levels by NALCN-siRNA. Accordingly, pain-related symptoms were significantly alleviated by NALCN-siRNA-mediated NALCN knockdown and completely prevented by NALCN-shRNA-mediated NALCN knockdown in rats or by conditional NALCN knockout in mice. Our results indicate that increases in NALCN expression and function contribute to CCI-induced neuronal sensitization; therefore, NALCN may be a novel molecular target for control of neuropathic pain.
Coppock JD, Volaric AK, Mills AM, Gru AA.
PMID: 30075155 | DOI: 10.1016/j.humpath.2018.07.025
Targeted inhibition of programmed cell death-1 (PD-1) and its ligand (PD-L1) has emerged as first-line therapy for advanced non-small cell lung cancer. While patients with high PD-L1 expression have improved outcomes with anti-PD-1/PD-L1 directed therapies, use as a predictive biomarker is complicated by robust responses in some patients with low-level expression. Furthermore, reported PD-L1 levels in lung cancers vary widely and discrepancies exist with different antibodies. PD-L1 expression was thus compared by immunohistochemistry (IHC) versus RNA in situ hybridization (ISH) in 112 lung cancers by tissue microarray: 51 adenocarcinoma, 42 squamous cell carcinoma, 9 adenosquamous carcinoma, 5 carcinoid, 3 undifferentiated large-cell carcinoma, 1 large-cell neuroendocrine carcinoma, and 1 small cell carcinoma. At least 1% tumor cell staining was considered positive in each modality. A positive concordance of only 60% (67/112) was found between IHC and ISH. 50% (56/112) were positive by IHC and 50% (56/112) by ISH, however 20% (22/112) were ISH positive but IHC negative. Conversely, 21% (23/112) were IHC positive but ISH negative. There was no significant stratification of PD-L1 positivity by histologic subtype. A trend of more PD-L1 positive stage I cancers identified by ISH versus IHC was observed, however was not statistically significant [50% (27/54) by IHC and 64% (35/55) by ISH, P=.18]. No significant difference in survival was identified, with an average of 5.3months in IHC versus 5.2months in ISH positive cases. The results demonstrate discordance between PD-L1 RNA levels and protein expression in non-small cell lung cancers, warranting comparison as predictive biomarkers.