Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (4638)
  • Kits & Accessories (58)
  • Support & Documents (0)
  • Publications (6996)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (1142) Apply Mouse filter
  • Human (988) Apply Human filter
  • Other (359) Apply Other filter
  • Zebrafish (267) Apply Zebrafish filter
  • Human herpesvirus (99) Apply Human herpesvirus filter
  • Langat virus (65) Apply Langat virus filter
  • Powassan virus (64) Apply Powassan virus filter
  • Monkey (59) Apply Monkey filter
  • Cloning vector (38) Apply Cloning vector filter
  • Rhincodon typus (36) Apply Rhincodon typus filter
  • Pig (33) Apply Pig filter
  • Influenza virus (33) Apply Influenza virus filter
  • Lassa virus (33) Apply Lassa virus filter
  • synthetic construct (33) Apply synthetic construct filter
  • Hepacivirus (32) Apply Hepacivirus filter
  • Oryzias latipes (32) Apply Oryzias latipes filter
  • Gekko japonicus (32) Apply Gekko japonicus filter
  • Phocoenid herpesvirus (32) Apply Phocoenid herpesvirus filter
  • Newcastle disease virus (32) Apply Newcastle disease virus filter
  • Gadus morhua (32) Apply Gadus morhua filter
  • Measles virus (31) Apply Measles virus filter
  • Felis catus (27) Apply Felis catus filter
  • Astyanax mexicanus (21) Apply Astyanax mexicanus filter
  • Other virus (3) Apply Other virus filter

Gene

  • TBD (1413) Apply TBD filter
  • INS (192) Apply INS filter
  • dazl (178) Apply dazl filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • DISC1 (109) Apply DISC1 filter
  • Dmbt1 (109) Apply Dmbt1 filter
  • Hic1 (108) Apply Hic1 filter
  • NFKBIZ (91) Apply NFKBIZ filter
  • Gad1 (90) Apply Gad1 filter
  • Nfkb1 (80) Apply Nfkb1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • Ikbke (74) Apply Ikbke filter
  • FOS (73) Apply FOS filter
  • GREB1 (73) Apply GREB1 filter
  • NFKB2 (73) Apply NFKB2 filter
  • PRAME (72) Apply PRAME filter
  • PACSIN2 (72) Apply PACSIN2 filter
  • ALPP (71) Apply ALPP filter
  • Powassan (71) Apply Powassan filter
  • Langat (70) Apply Langat filter
  • 16SrRNA (69) Apply 16SrRNA filter
  • MACC1 (67) Apply MACC1 filter
  • Aim2 (66) Apply Aim2 filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • GEM (63) Apply GEM filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PACSIN3 (48) Apply PACSIN3 filter
  • RER1 (48) Apply RER1 filter
  • SPIDR (48) Apply SPIDR filter
  • SPRING1 (48) Apply SPRING1 filter
  • PVALB (47) Apply PVALB filter
  • BFSP1 (47) Apply BFSP1 filter
  • egfp (46) Apply egfp filter
  • DCC (46) Apply DCC filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • DLC1 (41) Apply DLC1 filter
  • Greb1l (40) Apply Greb1l filter
  • GFAP (39) Apply GFAP filter

Platform

  • Manual Assay RNAscope HiPlex (1466) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (496) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (311) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (158) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay miRNAscope (41) Apply Manual Assay miRNAscope filter
  • Manual Assay BaseScope (40) Apply Manual Assay BaseScope filter
  • Automated Assay for Leica Systems - miRNAscope (27) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (19) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (19) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (10) Apply Automated Assay for Ventana Systems - miRNAscope filter

Channel

  • 1 (492) Apply 1 filter
  • 2 (443) Apply 2 filter
  • 3 (294) Apply 3 filter
  • 4 (286) Apply 4 filter
  • 6 (137) Apply 6 filter
  • 5 (99) Apply 5 filter

HiPlex Channel

  • T10 (245) Apply T10 filter
  • T1 (244) Apply T1 filter
  • T11 (244) Apply T11 filter
  • T12 (244) Apply T12 filter
  • T2 (237) Apply T2 filter
  • T4 (237) Apply T4 filter
  • T6 (237) Apply T6 filter
  • T7 (237) Apply T7 filter
  • T8 (237) Apply T8 filter
  • T3 (236) Apply T3 filter
  • T9 (236) Apply T9 filter
  • T5 (234) Apply T5 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1023) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (968) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (720) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (695) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (292) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • TBD (183) Apply TBD filter
  • RNAscope 2.5 HD Duplex (158) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (104) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (96) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (90) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (12) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (11) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1826) Apply Neuroscience filter
  • Cancer (1368) Apply Cancer filter
  • Development (494) Apply Development filter
  • Inflammation (466) Apply Inflammation filter
  • Other (406) Apply Other filter
  • Infectious Disease (405) Apply Infectious Disease filter
  • Stem Cells (254) Apply Stem Cells filter
  • Covid (232) Apply Covid filter
  • Infectious (218) Apply Infectious filter
  • HPV (186) Apply HPV filter
  • lncRNA (133) Apply lncRNA filter
  • Metabolism (90) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (76) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (65) Apply Other: Methods filter
  • CGT (62) Apply CGT filter
  • HIV (62) Apply HIV filter
  • Pain (61) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (44) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (39) Apply Other: Heart filter
  • Reproduction (36) Apply Reproduction filter
  • Endocrinology (33) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Kidney (26) Apply Kidney filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Other: Zoological Disease (19) Apply Other: Zoological Disease filter
  • Regeneration (19) Apply Regeneration filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Fibrosis (16) Apply Fibrosis filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Liver (16) Apply Other: Liver filter
  • Injury (15) Apply Injury filter
  • Other: Skin (15) Apply Other: Skin filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (1030) Apply Target Probes filter
  • 38322 (8) Apply 38322 filter
  • Automated Assay 2.5: Leica System (7) Apply Automated Assay 2.5: Leica System filter
  • Control Probe - Automated Leica Multiplex (7) Apply Control Probe - Automated Leica Multiplex filter
  • Manual Assay RNAscope Multiplex (3) Apply Manual Assay RNAscope Multiplex filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • Control Probe- Manual RNAscope Multiplex (3) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe- Manual RNAscope HiPlex (3) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (2) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Manual Assay RNAscope Duplex (2) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay BaseScope Red (2) Apply Manual Assay BaseScope Red filter
  • Manual Assay miRNAscope Red (2) Apply Manual Assay miRNAscope Red filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • IA: Other Accessories (1) Apply IA: Other Accessories filter
  • Control Probe - Manual BaseScope Singleplex (1) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - Automated Leica (1) Apply Control Probe - Automated Leica filter
  • Control Probe - LS BaseScope Singleplex (1) Apply Control Probe - LS BaseScope Singleplex filter
  • IA: Other (1) Apply IA: Other filter
  • Control Probe - VS BaseScope Singleplex (1) Apply Control Probe - VS BaseScope Singleplex filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter

Sample Compatibility

  • Cell pellets (22) Apply Cell pellets filter
  • FFPE (22) Apply FFPE filter
  • TMA (16) Apply TMA filter
  • Fixed frozen tissue (14) Apply Fixed frozen tissue filter
  • Adherent cells (13) Apply Adherent cells filter
  • Fresh frozen tissue (9) Apply Fresh frozen tissue filter
  • Cell Cultures (9) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (6) Apply TMA(Tissue Microarray) filter
  • Freshfrozen tissue (5) Apply Freshfrozen tissue filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (5) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (3) Apply CTC filter
  • PBMC's (3) Apply PBMC's filter

Category

  • Publications (6996) Apply Publications filter

Application

  • Cancer (620) Apply Cancer filter
  • Cancer, Neuroscience (331) Apply Cancer, Neuroscience filter
  • Neuroscience (176) Apply Neuroscience filter
  • Non-coding RNA (126) Apply Non-coding RNA filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (60) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation (31) Apply Cancer, Inflammation filter
  • Inflammation (26) Apply Inflammation filter
  • 1442 (24) Apply 1442 filter
  • Stem Cell (20) Apply Stem Cell filter
  • 20 (8) Apply 20 filter
  • Cancer,Neuroscience (4) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (1) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
Genotype-phenotype mapping of a patient-derived lung cancer organoid biobank identifies NKX2-1-defined Wnt dependency in lung adenocarcinoma

Cell reports

2023 Mar 28

Ebisudani, T;Hamamoto, J;Togasaki, K;Mitsuishi, A;Sugihara, K;Shinozaki, T;Fukushima, T;Kawasaki, K;Seino, T;Oda, M;Hanyu, H;Toshimitsu, K;Emoto, K;Hayashi, Y;Asakura, K;Johnson, TA;Terai, H;Ikemura, S;Kawada, I;Ishii, M;Hishida, T;Asamura, H;Soejima, K;Nakagawa, H;Fujii, M;Fukunaga, K;Yasuda, H;Sato, T;
PMID: 36870059 | DOI: 10.1016/j.celrep.2023.112212

Human lung cancer is a constellation of tumors with various histological and molecular properties. To build a preclinical platform that covers this broad disease spectrum, we obtained lung cancer specimens from multiple sources, including sputum and circulating tumor cells, and generated a living biobank consisting of 43 lines of patient-derived lung cancer organoids. The organoids recapitulated the histological and molecular hallmarks of the original tumors. Phenotypic screening of niche factor dependency revealed that EGFR mutations in lung adenocarcinoma are associated with the independence from Wnt ligands. Gene engineering of alveolar organoids reveals that constitutive activation of EGFR-RAS signaling provides Wnt independence. Loss of the alveolar identity gene NKX2-1 confers Wnt dependency, regardless of EGFR signal mutation. Sensitivity to Wnt-targeting therapy can be stratified by the expression status of NKX2-1. Our results highlight the potential of phenotype-driven organoid screening and engineering for the fabrication of therapeutic strategies to combat cancer.
A single-cell transcriptional atlas reveals resident progenitor cell niche functions in TMJ disc development and injury

Nature communications

2023 Feb 14

Bi, R;Yin, Q;Li, H;Yang, X;Wang, Y;Li, Q;Fang, H;Li, P;Lyu, P;Fan, Y;Ying, B;Zhu, S;
PMID: 36788226 | DOI: 10.1038/s41467-023-36406-2

The biological characteristics of the temporomandibular joint disc involve complex cellular network in cell identity and extracellular matrix composition to modulate jaw function. The lack of a detailed characterization of the network severely limits the development of targeted therapies for temporomandibular joint-related diseases. Here we profiled single-cell transcriptomes of disc cells from mice at different postnatal stages, finding that the fibroblast population could be divided into chondrogenic and non-chondrogenic clusters. We also find that the resident mural cell population is the source of disc progenitors, characterized by ubiquitously active expression of the NOTCH3 and THY1 pathways. Lineage tracing reveals that Myh11+ mural cells coordinate angiogenesis during disc injury but lost their progenitor characteristics and ultimately become Sfrp2+ non-chondrogenic fibroblasts instead of Chad+ chondrogenic fibroblasts. Overall, we reveal multiple insights into the coordinated development of disc cells and are the first to describe the resident mural cell progenitor during disc injury.
Topographic representation of current and future threats in the mouse nociceptive amygdala

Nature communications

2023 Jan 13

Bowen, AJ;Huang, YW;Chen, JY;Pauli, JL;Campos, CA;Palmiter, RD;
PMID: 36639374 | DOI: 10.1038/s41467-023-35826-4

Adaptive behaviors arise from an integration of current sensory context and internal representations of past experiences. The central amygdala (CeA) is positioned as a key integrator of cognitive and affective signals, yet it remains unknown whether individual populations simultaneously carry current- and future-state representations. We find that a primary nociceptive population within the CeA of mice, defined by CGRP-receptor (Calcrl) expression, receives topographic sensory information, with spatially defined representations of internal and external stimuli. While Calcrl+ neurons in both the rostral and caudal CeA respond to noxious stimuli, rostral neurons promote locomotor responses to externally sourced threats, while caudal CeA Calcrl+ neurons are activated by internal threats and promote passive coping behaviors and associative valence coding. During associative fear learning, rostral CeA Calcrl+ neurons stably encode noxious stimulus occurrence, while caudal CeA Calcrl+ neurons acquire predictive responses. This arrangement supports valence-aligned representations of current and future threats for the generation of adaptive behaviors.
An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury

Developmental cell

2023 Jan 19

Rodrigo Albors, A;Singer, GA;Llorens-Bobadilla, E;Frisén, J;May, AP;Ponting, CP;Storey, KG;
PMID: 36706756 | DOI: 10.1016/j.devcel.2023.01.003

The adult spinal cord stem cell potential resides within the ependymal cell population and declines with age. Ependymal cells are, however, heterogeneous, and the biological diversity this represents and how it changes with age remain unknown. Here, we present a single-cell transcriptomic census of spinal cord ependymal cells from adult and aged mice, identifying not only all known ependymal cell subtypes but also immature as well as mature cell states. By comparing transcriptomes of spinal cord and brain ependymal cells, which lack stem cell abilities, we identify immature cells as potential spinal cord stem cells. Following spinal cord injury, these cells re-enter the cell cycle, which is accompanied by a short-lived reversal of ependymal cell maturation. We further analyze ependymal cells in the human spinal cord and identify widespread cell maturation and altered cell identities. This in-depth characterization of spinal cord ependymal cells provides insight into their biology and informs strategies for spinal cord repair.
SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming

Cell

2022 Dec 02

Wu, CT;Lidsky, PV;Xiao, Y;Cheng, R;Lee, IT;Nakayama, T;Jiang, S;He, W;Demeter, J;Knight, MG;Turn, RE;Rojas-Hernandez, LS;Ye, C;Chiem, K;Shon, J;Martinez-Sobrido, L;Bertozzi, CR;Nolan, GP;Nayak, JV;Milla, C;Andino, R;Jackson, PK;
PMID: 36580912 | DOI: 10.1016/j.cell.2022.11.030

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer

Cell

2022 Dec 08

Sinha, S;Sparks, HD;Labit, E;Robbins, HN;Gowing, K;Jaffer, A;Kutluberk, E;Arora, R;Raredon, MSB;Cao, L;Swanson, S;Jiang, P;Hee, O;Pope, H;Workentine, M;Todkar, K;Sharma, N;Bharadia, S;Chockalingam, K;de Almeida, LGN;Adam, M;Niklason, L;Potter, SS;Seifert, AW;Dufour, A;Gabriel, V;Rosin, NL;Stewart, R;Muench, G;McCorkell, R;Matyas, J;Biernaskie, J;
PMID: 36493752 | DOI: 10.1016/j.cell.2022.11.004

Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.
Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development

Immunity

2022 Dec 13

Kim, JE;Li, B;Fei, L;Horne, R;Lee, D;Loe, AK;Miyake, H;Ayar, E;Kim, DK;Surette, MG;Philpott, DJ;Sherman, P;Guo, G;Pierro, A;Kim, TH;
PMID: 36473468 | DOI: 10.1016/j.immuni.2022.11.003

Intestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life. Mouse genetic and organoid co-culture experiments demonstrated that a CD206+ subset of intestinal macrophages secreted Wnt ligands, which maintained the mesenchymal niche cells important for Paneth cell differentiation. Antibiotics and reduced numbers of Paneth cells are associated with the deadly infant disease, necrotizing enterocolitis (NEC). We showed that colonization with Lactobacillus or transfer of CD206+ macrophages promoted Paneth cell differentiation and reduced NEC severity. Together, our work defines the gut microbiota-mediated regulation of stem cell niches during early postnatal development.
In mice and humans, brain microvascular contractility matures postnatally

Brain structure & function

2022 Nov 16

Slaoui, L;Gilbert, A;Rancillac, A;Delaunay-Piednoir, B;Chagnot, A;Gerard, Q;Letort, G;Mailly, P;Robil, N;Gelot, A;Lefebvre, M;Favier, M;Dias, K;Jourdren, L;Federici, L;Auvity, S;Cisternino, S;Vivien, D;Cohen-Salmon, M;Boulay, AC;
PMID: 36380034 | DOI: 10.1007/s00429-022-02592-w

Although great efforts to characterize the embryonic phase of brain microvascular system development have been made, its postnatal maturation has barely been described. Here, we compared the molecular and functional properties of brain vascular cells on postnatal day (P)5 vs. P15, via a transcriptomic analysis of purified mouse cortical microvessels (MVs) and the identification of vascular-cell-type-specific or -preferentially expressed transcripts. We found that endothelial cells (EC), vascular smooth muscle cells (VSMC) and fibroblasts (FB) follow specific molecular maturation programs over this time period. Focusing on VSMCs, we showed that the arteriolar VSMC network expands and becomes contractile resulting in a greater cerebral blood flow (CBF), with heterogenous developmental trajectories within cortical regions. Samples of the human brain cortex showed the same postnatal maturation process. Thus, the postnatal phase is a critical period during which arteriolar VSMC contractility required for vessel tone and brain perfusion is acquired and mature.
Neurotensin neurons in the extended amygdala control dietary choice and energy homeostasis

Nature neuroscience

2022 Nov 01

Furlan, A;Corona, A;Boyle, S;Sharma, R;Rubino, R;Habel, J;Gablenz, EC;Giovanniello, J;Beyaz, S;Janowitz, T;Shea, SD;Li, B;
PMID: 36266470 | DOI: 10.1038/s41593-022-01178-3

Obesity is a global pandemic that is causally linked to many life-threatening diseases. Apart from some rare genetic conditions, the biological drivers of overeating and reduced activity are unclear. Here, we show that neurotensin-expressing neurons in the mouse interstitial nucleus of the posterior limb of the anterior commissure (IPAC), a nucleus of the central extended amygdala, encode dietary preference for unhealthy energy-dense foods. Optogenetic activation of IPACNts neurons promotes obesogenic behaviors, such as hedonic eating, and modulates food preference. Conversely, acute inhibition of IPACNts neurons reduces feeding and decreases hedonic eating. Chronic inactivation of IPACNts neurons recapitulates these effects, reduces preference for sweet, non-caloric tastants and, furthermore, enhances locomotion and energy expenditure; as a result, mice display long-term weight loss and improved metabolic health and are protected from obesity. Thus, the activity of a single neuronal population bidirectionally regulates energy homeostasis. Our findings could lead to new therapeutic strategies to prevent and treat obesity.
Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain

Cell

2022 Sep 29

Crouch, EE;Bhaduri, A;Andrews, MG;Cebrian-Silla, A;Diafos, LN;Birrueta, JO;Wedderburn-Pugh, K;Valenzuela, EJ;Bennett, NK;Eze, UC;Sandoval-Espinosa, C;Chen, J;Mora, C;Ross, JM;Howard, CE;Gonzalez-Granero, S;Lozano, JF;Vento, M;Haeussler, M;Paredes, MF;Nakamura, K;Garcia-Verdugo, JM;Alvarez-Buylla, A;Kriegstein, AR;Huang, EJ;
PMID: 36179668 | DOI: 10.1016/j.cell.2022.09.004

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.
Deciphering the transcriptional landscape of human pluripotent stem cell-derived GnRH neurons: the role of Wnt signaling in patterning the neural fate

Stem cells (Dayton, Ohio)

2022 Sep 25

Wang, Y;Madhusudan, S;Cotellessa, L;Kvist, J;Eskici, N;Yellapragada, V;Pulli, K;Lund, C;Vaaralahti, K;Tuuri, T;Giacobini, P;Raivio, T;
PMID: 36153707 | DOI: 10.1093/stmcls/sxac069

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons lay the foundation for human development and reproduction, however, the critical cell populations and the entangled mechanisms underlying the development of human GnRH neurons remain poorly understood. Here, by utilizing our established human pluripotent stem cells-derived GnRH neuron model, we decoded the cellular heterogeneity and differentiation trajectories at the single-cell level. We found that a glutamatergic neuron population, which generated together with GnRH neurons, showed similar transcriptomic properties with olfactory sensory neuron and provided the migratory path for GnRH neurons. Through trajectory analysis, we identified a specific gene module activated along the GnRH neuron differentiation lineage, and we examined one of the transcription factors, DLX5, expression in human fetal GnRH neurons. Furthermore, we found that Wnt inhibition could increase DLX5 expression, and improve the GnRH neuron differentiation efficiency through promoting neurogenesis and switching the differentiation fates of neural progenitors into glutamatergic neurons/GnRH neurons. Our research comprehensively reveals the dynamic cell population transition and gene regulatory network during GnRH neuron differentiation.
Mesenchymal-epithelial interaction regulates gastrointestinal tract development in mouse embryos

Cell reports

2022 Jul 12

Zhao, L;Song, W;Chen, YG;
PMID: 35830795 | DOI: 10.1016/j.celrep.2022.111053

After gut tube patterning in early embryos, the cellular and molecular changes of developing stomach and intestine remain largely unknown. Here, combining single-cell RNA sequencing and spatial RNA sequencing, we construct a spatiotemporal transcriptomic landscape of the mouse stomach and intestine during embryonic days E9.5-E15.5. Several subpopulations are identified, including Lox+ stomach mesenchyme, Aldh1a3+ small-intestinal mesenchyme, and Adamdec1+ large-intestinal mesenchyme. The regionalization and heterogeneity of both the epithelium and the mesenchyme can be traced back to E9.5. The spatiotemporal distributions of cell clusters and the mesenchymal-epithelial interaction analysis indicate that a coordinated development of the epithelium and mesenchyme contribute to the stomach regionalization, intestine segmentation, and villus formation. Using the gut tube-derived organoids, we find that the cell fate of the foregut and hindgut can be switched by the regional niche factors, including fibroblast growth factors (FGFs) and retinoic acid (RA). This work lays a foundation for further dissection of the mechanisms governing this process.

Pages

  • « first
  • ‹ previous
  • …
  • 959
  • 960
  • 961
  • 962
  • 963
  • 964
  • 965
  • 966
  • 967
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?