Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (4638)
  • Kits & Accessories (58)
  • Support & Documents (0)
  • Publications (6996)
  • Image gallery (0)
Refine Probe List

Content for comparison

Species

  • Mouse (1142) Apply Mouse filter
  • Human (988) Apply Human filter
  • Other (359) Apply Other filter
  • Zebrafish (267) Apply Zebrafish filter
  • Human herpesvirus (99) Apply Human herpesvirus filter
  • Langat virus (65) Apply Langat virus filter
  • Powassan virus (64) Apply Powassan virus filter
  • Monkey (59) Apply Monkey filter
  • Cloning vector (38) Apply Cloning vector filter
  • Rhincodon typus (36) Apply Rhincodon typus filter
  • Pig (33) Apply Pig filter
  • Influenza virus (33) Apply Influenza virus filter
  • Lassa virus (33) Apply Lassa virus filter
  • synthetic construct (33) Apply synthetic construct filter
  • Hepacivirus (32) Apply Hepacivirus filter
  • Oryzias latipes (32) Apply Oryzias latipes filter
  • Gekko japonicus (32) Apply Gekko japonicus filter
  • Phocoenid herpesvirus (32) Apply Phocoenid herpesvirus filter
  • Newcastle disease virus (32) Apply Newcastle disease virus filter
  • Gadus morhua (32) Apply Gadus morhua filter
  • Measles virus (31) Apply Measles virus filter
  • Felis catus (27) Apply Felis catus filter
  • Astyanax mexicanus (21) Apply Astyanax mexicanus filter
  • Other virus (3) Apply Other virus filter

Gene

  • TBD (1413) Apply TBD filter
  • INS (192) Apply INS filter
  • dazl (178) Apply dazl filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • DISC1 (109) Apply DISC1 filter
  • Dmbt1 (109) Apply Dmbt1 filter
  • Hic1 (108) Apply Hic1 filter
  • NFKBIZ (91) Apply NFKBIZ filter
  • Gad1 (90) Apply Gad1 filter
  • Nfkb1 (80) Apply Nfkb1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • Ikbke (74) Apply Ikbke filter
  • FOS (73) Apply FOS filter
  • GREB1 (73) Apply GREB1 filter
  • NFKB2 (73) Apply NFKB2 filter
  • PRAME (72) Apply PRAME filter
  • PACSIN2 (72) Apply PACSIN2 filter
  • ALPP (71) Apply ALPP filter
  • Powassan (71) Apply Powassan filter
  • Langat (70) Apply Langat filter
  • 16SrRNA (69) Apply 16SrRNA filter
  • MACC1 (67) Apply MACC1 filter
  • Aim2 (66) Apply Aim2 filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • GEM (63) Apply GEM filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PACSIN3 (48) Apply PACSIN3 filter
  • RER1 (48) Apply RER1 filter
  • SPIDR (48) Apply SPIDR filter
  • SPRING1 (48) Apply SPRING1 filter
  • PVALB (47) Apply PVALB filter
  • BFSP1 (47) Apply BFSP1 filter
  • egfp (46) Apply egfp filter
  • DCC (46) Apply DCC filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • DLC1 (41) Apply DLC1 filter
  • Greb1l (40) Apply Greb1l filter
  • GFAP (39) Apply GFAP filter

Platform

  • Manual Assay RNAscope HiPlex (1466) Apply Manual Assay RNAscope HiPlex filter
  • Automated Assay for Leica Systems - RNAscope (496) Apply Automated Assay for Leica Systems - RNAscope filter
  • Manual Assay RNAscope (311) Apply Manual Assay RNAscope filter
  • Automated Assay for Ventana Systems - RNAscope (158) Apply Automated Assay for Ventana Systems - RNAscope filter
  • Manual Assay miRNAscope (41) Apply Manual Assay miRNAscope filter
  • Manual Assay BaseScope (40) Apply Manual Assay BaseScope filter
  • Automated Assay for Leica Systems - miRNAscope (27) Apply Automated Assay for Leica Systems - miRNAscope filter
  • Automated Assay for Leica Systems - BaseScope (19) Apply Automated Assay for Leica Systems - BaseScope filter
  • Automated Assay for Ventana System - BaseScope (19) Apply Automated Assay for Ventana System - BaseScope filter
  • Automated Assay for Ventana Systems - miRNAscope (10) Apply Automated Assay for Ventana Systems - miRNAscope filter

Channel

  • 1 (492) Apply 1 filter
  • 2 (443) Apply 2 filter
  • 3 (294) Apply 3 filter
  • 4 (286) Apply 4 filter
  • 6 (137) Apply 6 filter
  • 5 (99) Apply 5 filter

HiPlex Channel

  • T10 (245) Apply T10 filter
  • T1 (244) Apply T1 filter
  • T11 (244) Apply T11 filter
  • T12 (244) Apply T12 filter
  • T2 (237) Apply T2 filter
  • T4 (237) Apply T4 filter
  • T6 (237) Apply T6 filter
  • T7 (237) Apply T7 filter
  • T8 (237) Apply T8 filter
  • T3 (236) Apply T3 filter
  • T9 (236) Apply T9 filter
  • T5 (234) Apply T5 filter

Product

  • RNAscope Multiplex Fluorescent Assay (1023) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (968) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (720) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (695) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (497) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (292) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (191) Apply RNAscope 2.5 LS Assay filter
  • TBD (183) Apply TBD filter
  • RNAscope 2.5 HD Duplex (158) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (104) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (96) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (90) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (85) Apply RNAscope 2.5 VS Assay filter
  • Basescope (53) Apply Basescope filter
  • RNAscope HiPlex v2 assay (30) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (26) Apply miRNAscope filter
  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (12) Apply RNAscope 2.5 HD duplex reagent kit filter
  • BaseScope Duplex Assay (11) Apply BaseScope Duplex Assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope ISH Probe High Risk HPV (5) Apply RNAscope ISH Probe High Risk HPV filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • DNAscope Duplex Assay (2) Apply DNAscope Duplex Assay filter
  • RNAscope 2.5 HD Assay (2) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay - RED (2) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope Multiplex Fluorescent Assay v2 (2) Apply RNAscope Multiplex Fluorescent Assay v2 filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • miRNAscope Assay Red (1) Apply miRNAscope Assay Red filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter
  • RNAscope LS Multiplex Fluorescent Assay (1) Apply RNAscope LS Multiplex Fluorescent Assay filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • Neuroscience (1826) Apply Neuroscience filter
  • Cancer (1368) Apply Cancer filter
  • Development (494) Apply Development filter
  • Inflammation (466) Apply Inflammation filter
  • Other (406) Apply Other filter
  • Infectious Disease (405) Apply Infectious Disease filter
  • Stem Cells (254) Apply Stem Cells filter
  • Covid (232) Apply Covid filter
  • Infectious (218) Apply Infectious filter
  • HPV (186) Apply HPV filter
  • lncRNA (133) Apply lncRNA filter
  • Metabolism (90) Apply Metabolism filter
  • Developmental (83) Apply Developmental filter
  • Stem cell (76) Apply Stem cell filter
  • Immunotherapy (72) Apply Immunotherapy filter
  • Other: Methods (65) Apply Other: Methods filter
  • CGT (62) Apply CGT filter
  • HIV (62) Apply HIV filter
  • Pain (61) Apply Pain filter
  • diabetes (57) Apply diabetes filter
  • LncRNAs (44) Apply LncRNAs filter
  • Aging (43) Apply Aging filter
  • Other: Heart (39) Apply Other: Heart filter
  • Reproduction (36) Apply Reproduction filter
  • Endocrinology (33) Apply Endocrinology filter
  • Other: Metabolism (32) Apply Other: Metabolism filter
  • Obesity (29) Apply Obesity filter
  • Other: Lung (29) Apply Other: Lung filter
  • Behavior (27) Apply Behavior filter
  • Other: Kidney (27) Apply Other: Kidney filter
  • Alzheimer's Disease (26) Apply Alzheimer's Disease filter
  • Kidney (26) Apply Kidney filter
  • Bone (24) Apply Bone filter
  • Stress (21) Apply Stress filter
  • Skin (20) Apply Skin filter
  • Heart (19) Apply Heart filter
  • Liver (19) Apply Liver filter
  • Lung (19) Apply Lung filter
  • Other: Zoological Disease (19) Apply Other: Zoological Disease filter
  • Regeneration (19) Apply Regeneration filter
  • Psychiatry (17) Apply Psychiatry filter
  • behavioral (16) Apply behavioral filter
  • Fibrosis (16) Apply Fibrosis filter
  • Other: Endocrinology (16) Apply Other: Endocrinology filter
  • Other: Liver (16) Apply Other: Liver filter
  • Injury (15) Apply Injury filter
  • Other: Skin (15) Apply Other: Skin filter
  • Anxiety (14) Apply Anxiety filter
  • Memory (14) Apply Memory filter
  • Reproductive Biology (14) Apply Reproductive Biology filter

Product sub type

  • Target Probes (1030) Apply Target Probes filter
  • 38322 (8) Apply 38322 filter
  • Automated Assay 2.5: Leica System (7) Apply Automated Assay 2.5: Leica System filter
  • Control Probe - Automated Leica Multiplex (7) Apply Control Probe - Automated Leica Multiplex filter
  • Manual Assay RNAscope Multiplex (3) Apply Manual Assay RNAscope Multiplex filter
  • Automated Assay 2.5: Ventana System (3) Apply Automated Assay 2.5: Ventana System filter
  • Control Probe- Manual RNAscope Multiplex (3) Apply Control Probe- Manual RNAscope Multiplex filter
  • Control Probe- Manual RNAscope HiPlex (3) Apply Control Probe- Manual RNAscope HiPlex filter
  • Manual Assay RNAscope Brown (2) Apply Manual Assay RNAscope Brown filter
  • Manual Assay RNAscope Red (2) Apply Manual Assay RNAscope Red filter
  • Manual Assay RNAscope Duplex (2) Apply Manual Assay RNAscope Duplex filter
  • Manual Assay BaseScope Red (2) Apply Manual Assay BaseScope Red filter
  • Manual Assay miRNAscope Red (2) Apply Manual Assay miRNAscope Red filter
  • Manual Assay: Accessory Reagent (1) Apply Manual Assay: Accessory Reagent filter
  • IA: Other Accessories (1) Apply IA: Other Accessories filter
  • Control Probe - Manual BaseScope Singleplex (1) Apply Control Probe - Manual BaseScope Singleplex filter
  • Control Probe - Automated Leica (1) Apply Control Probe - Automated Leica filter
  • Control Probe - LS BaseScope Singleplex (1) Apply Control Probe - LS BaseScope Singleplex filter
  • IA: Other (1) Apply IA: Other filter
  • Control Probe - VS BaseScope Singleplex (1) Apply Control Probe - VS BaseScope Singleplex filter
  • miRNAscope Automated Assay: Leica System (1) Apply miRNAscope Automated Assay: Leica System filter

Sample Compatibility

  • Cell pellets (22) Apply Cell pellets filter
  • FFPE (22) Apply FFPE filter
  • TMA (16) Apply TMA filter
  • Fixed frozen tissue (14) Apply Fixed frozen tissue filter
  • Adherent cells (13) Apply Adherent cells filter
  • Fresh frozen tissue (9) Apply Fresh frozen tissue filter
  • Cell Cultures (9) Apply Cell Cultures filter
  • TMA(Tissue Microarray) (6) Apply TMA(Tissue Microarray) filter
  • Freshfrozen tissue (5) Apply Freshfrozen tissue filter
  • FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells (5) Apply FFPE,Freshfrozen tissue,Fixed frozen tissue,TMA,Cell pellets,Adherent cells filter
  • CTC (3) Apply CTC filter
  • PBMC's (3) Apply PBMC's filter

Category

  • Publications (6996) Apply Publications filter

Application

  • Cancer (620) Apply Cancer filter
  • Cancer, Neuroscience (331) Apply Cancer, Neuroscience filter
  • Neuroscience (176) Apply Neuroscience filter
  • Non-coding RNA (126) Apply Non-coding RNA filter
  • Cancer, Inflammation, Neuroscience, Stem Cell (60) Apply Cancer, Inflammation, Neuroscience, Stem Cell filter
  • Cancer, Inflammation (31) Apply Cancer, Inflammation filter
  • Inflammation (26) Apply Inflammation filter
  • 1442 (24) Apply 1442 filter
  • Stem Cell (20) Apply Stem Cell filter
  • 20 (8) Apply 20 filter
  • Cancer,Neuroscience (4) Apply Cancer,Neuroscience filter
  • Cancer,Inflammation,Neuroscience,Stem Cell (1) Apply Cancer,Inflammation,Neuroscience,Stem Cell filter
4931414P19Rik, a microglia chemoattractant secreted by neural progenitors, modulates neuronal migration during corticogenesis

Development (Cambridge, England)

2023 May 01

Mestres, I;Calegari, F;
PMID: 37070770 | DOI: 10.1242/dev.201574

Communication between the nervous and immune system is crucial for development, homeostasis and response to injury. Before the onset of neurogenesis, microglia populate the central nervous system, serving as resident immune cells over the course of life. Here, we describe new roles of an uncharacterized transcript upregulated by neurogenic progenitors during mouse corticogenesis: 4931414P19Rik (hereafter named P19). Overexpression of P19 cell-extrinsically inhibited neuronal migration and acted as chemoattractant of microglial cells. Interestingly, effects on neuronal migration were found to result directly from P19 secretion by neural progenitors triggering microglia accumulation within the P19 targeted area. Our findings highlight the crucial role of microglia during brain development and identify P19 as a previously unreported player in the neuro-immune crosstalk.
Reporter Selection and Postmortem Methods to Verify Transgene Expression

Vectorology for Optogenetics and Chemogenetics

2023 Feb 07

Heffernan, K;Smith, Y;Galvan, A;
| DOI: 10.1007/978-1-0716-2918-5_15

The accurate localization of transgene expression after viral vector delivery is essential to the interpretation of experiments based on genetic-based approaches, such as chemo- or optogenetics. Postmortem histological analysis can be used to examine the injection target, the extent of the virus transduction, the types of cells expressing the transgene, and the subcellular localization of the protein. In this chapter, we will provide a general description of methods to identify transgene expression, immunocytochemistry protocols, and examples of specific protocols. We close the chapter with an example of an application of electron microscopy to identify the localization of transgene expression.
Dual-specificity RNA aptamers enable manipulation of target-specific O-GlcNAcylation and unveil functions of O-GlcNAc on β-catenin

Cell

2023 Jan 19

Zhu, Y;Hart, GW;
PMID: 36626902 | DOI: 10.1016/j.cell.2022.12.016

O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and β-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/β-catenin dual-specificity aptamers, we found that O-GlcNAcylation of β-catenin stabilizes the protein by inhibiting its interaction with β-TrCP. O-GlcNAc also increases β-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.
Mesenchymal stem cell-derived exosomes regulate microglia phenotypes: a promising treatment for acute central nervous system injury

Neural Regeneration Research

2022 Dec 14

Kang, H;Liu, Y;Li, Y;Wang, L;Zhao, Y;Yuan, R;Yang, M;Chen, Y;Zhang, H;Zhou, F;Qian, Z;
| DOI: 10.4103/1673-5374.363819

When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device. Because we respect your right to privacy, you can choose not to allow certain types of cookies on our website. Click on the different category headings to find out more and manage your cookie preferences. However, blocking some types of cookies may impact your experience on the site and the services we are able to offer. Privacy & Cookie Notice [http://journals.lww.com/_layouts/15/oaks.journals/privacy.aspx]Allow All
Focused ultrasound-mediated brain genome editing

Research square

2023 Jan 20

Leong, K;Lao, YH;Ji, R;Zhou, J;Snow, K;Kwon, N;Saville, E;He, S;Chauhan, S;Chi, CW;Datta, M;Zhang, H;Quek, CH;Cai, S;Li, M;Gaitan, Y;Bechtel, L;Wu, SY;Lutz, C;Tomer, R;Murray, S;Chavez, A;Konofagou, E;
PMID: 36712096 | DOI: 10.21203/rs.3.rs-2365576/v1

Gene editing in the mammalian brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain.
Embryogenic stem cell-derived intestinal crypt fission directs de novo crypt genesis

Cell reports

2022 Dec 13

Huang, XT;Li, T;Li, T;Xing, S;Tian, JZ;Ding, YF;Cai, SL;Yang, YS;Wood, C;Yang, JS;Yang, WJ;
PMID: 36516755 | DOI: 10.1016/j.celrep.2022.111796

Intestinal epithelial replenishment is fueled by continuously dividing intestinal stem cells (ISCs) resident at the crypt niche. However, the cell type(s) enabling replenishment upon damage and subsequent loss of whole crypts remain largely unclear. Using Set domain-containing protein 4 (Setd4), we identify a small population with reserve stem cell characteristics in the mouse intestine. Upon irradiation-induced injury, Setd4-expressing (Setd4+) cells survive radiation exposure and then activate to produce Sca-1-expressing cell types to restore the epithelial wall and regenerate crypts de novo via crypt fission. Setd4+ cells are confirmed to originate from the early fetal period, subsequently contributing to the development of embryonic gut and the establishment of postnatal crypts. Setd4+ cells are therefore represented as both originators and key regenerators of the intestine.
Towards a definition of microglia heterogeneity

Communications biology

2022 Oct 20

Healy, LM;Zia, S;Plemel, JR;
PMID: 36266565 | DOI: 10.1038/s42003-022-04081-6

High dimensional single-cell analysis such as single cell and single nucleus RNA sequencing (sc/snRNAseq) are currently being widely applied to explore microglia diversity. The use of sc/snRNAseq provides a powerful and unbiased approach to deconvolve heterogeneous cellular populations. However, sc/snRNAseq and analyses pipelines are designed to find heterogeneity. Indeed, cellular heterogeneity is often the most frequently reported finding. In this Perspective, we consider the ubiquitous concept of heterogeneity focusing on its application to microglia research and its influence on the field of neuroimmunology. We suggest that a clear understanding of the semantic and biological implications of microglia heterogeneity is essential for mitigating confusion among researchers.
RNA in-situ hybridization for pathology-based diagnosis of feline infectious peritonitis (FIP): current diagnostics for FIP and comparison to the current gold standard

Qeios

2022 Aug 02

Sweet, A; Andre, N; Licitra BN; Whittaker, B
| DOI: 10.32388/bv6713

The authors made a thorough study on the comparison of the gold standard method, IHC with a newly established RNAscope ISH method. The manuscript is clear, well-written, and uses appropriate English language. It starts with a clear introduction and review of current knowledge on FCoV/FIP, then goes into details on the key diagnostic methods we can use currently. The authors proved, that RNAscope ISH is sensitive and specific, more sensitive than the IHC method - therefore it can be used better in clinical and research settings as well. Images seem to be free of manipulation, and they explain clearly the difference between IHC and ISH.
Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update

Virology journal

2022 Jun 25

Yang, Y;Wei, Z;Xiong, C;Qian, H;
PMID: 35752810 | DOI: 10.1186/s12985-022-01833-y

Myocardial injury induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reportedly related to disease severity and mortality, attracting attention to exploring relevant pathogenic mechanisms. Limited by insufficient evidence, myocardial injury caused by direct viral invasion of cardiomyocytes (CMs) is not fully understood. Based on recent studies, endosomal dependence can compensate for S protein priming to mediate SARS-CoV-2 infection of CMs, damage the contractile function of CMs, trigger electrical dysfunction, and tip the balance of the renin-angiotensin-aldosterone system to exert a myocardial injury effect. In this review, we shed light on the direct injury caused by SARS-CoV-2 to provide a comprehensive understanding of the cardiac manifestations of coronavirus disease 2019 (COVID-19).
Cell-specific RNA purification to study translatomes of mouse central nervous system

STAR protocols

2022 Jun 17

Bravo-Ferrer, I;Khakh, BS;Díaz-Castro, B;
PMID: 35620074 | DOI: 10.1016/j.xpro.2022.101397

Cell-specific RNA sequencing has revolutionized the study of cell biology. Here, we present a protocol to assess cell-specific translatomes of genetically targeted cell types. We focus on astrocytes and describe RNA purification using RiboTag tools. Unlike single-cell RNA sequencing, this approach allows high sequencing depth to detect low expression genes, and the exploration of RNAs translated in subcellular compartments. Furthermore, it avoids underestimation of transcripts from cells susceptible to cell isolation procedures. The protocol can be applied to a variety of cell types. For complete details on the use and execution of this protocol, please refer to Chai et al. (2017), Díaz-Castro et al. (2021), Díaz-Castro et al. (2019), Srinivasan et al. (2016), and Yu et al. (2018).
Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing

Biochemistry (Moscow)

2022 Mar 01

Erofeeva, T;Grigorenko, A;Gusev, F;Kosevich, I;Rogaev, E;
| DOI: 10.1134/S0006297922030075

A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Visualization and functional characterization of lymphoid organ fibroblasts

Immunological reviews

2021 Dec 05

Onder, L;Cheng, HW;Ludewig, B;
PMID: 34866192 | DOI: 10.1111/imr.13051

Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche-specific functions of FRC subpopulations have been defined using genetic targeting, high-dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC-immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.

Pages

  • « first
  • ‹ previous
  • …
  • 956
  • 957
  • 958
  • 959
  • 960
  • 961
  • 962
  • 963
  • 964
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?