ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Gynecologic oncology
2022 Feb 09
Liao, X;Xia, X;Su, W;Yan, H;Ma, Y;Xu, L;Luo, H;Liu, W;Yin, D;Zhang, WH;Chen, HN;Deng, Y;Ren, Z;Yu, Z;Liao, F;Chen, K;Cao, M;Zhang, Y;Zhang, W;Wang, W;Zhao, JN;Xu, H;Shu, Y;
PMID: 35151492 | DOI: 10.1016/j.ygyno.2022.01.036
Human Pathology
2017 Mar 14
Mendez-Pena JE, Sadow PM, Vania Nose VN, Hoang MP.
PMID: 28302536 | DOI: 10.1016/j.humpath.2017.02.021
Detection of active human papillomavirus (HPV) is clinically important, as its presence has been shown to correlate with favorable clinical outcomes and better response to treatment in oropharyngeal squamous cell carcinomas (SCC). Using a clinical automated platform, we compared the performance of commercially available HPV DNA and RNA in situ hybridization (ISH) probes in archival tissues of 57 SCC. Importantly, a clinical automated platform gives 1) consistent and reproducible results for HPV ISH and 2) better standardization across clinical laboratories. Compared to polymerase chain reaction (PCR) results, RNA ISH exhibited 93% concordance versus 81% of DNA ISH. RNA ISH was more sensitive than DNA ISH (100% versus 88%), and more specific (87% versus 74%). When only accounting for 2-3+ positivity, sensitivity was 92% for RNA ISH versus 73% for DNA ISH, highlighting the ease of interpretation. p16 exhibited 96% sensitivity while specificity was only 55%. In 3 cases both RNA and DNA ISH were positive while PCR results were negative, suggesting that ISH methods might be a more sensitive method. Performing on a clinical automated platform, RNA ISH is sensitive in determining high-risk HPV status in formalin-fixed paraffin-embedded tissues and has the potential of being a standalone clinical test.
Appl Immunohistochem Mol Morphol.
2017 Aug 02
Drumheller B, Cohen C, Lawson D, Siddiqui MT.
PMID: 28777152 | DOI: 10.1097/PAI.0000000000000550
Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein. A direct clinical comparison between p16 IHC and an automated RNA ISH using 18 probes has not been established. Samples from 27 formalin-fixed, paraffin-embedded HNSCC cases from the Emory University Hospital archives were stained using 18 individual RNA ISH probes for high-risk HPV (RNAscope 2.5 LS Probe ) on a Leica autostainer (Buffalo Grove, IL) and were compared with p16 IHC. Two pathologists reviewed and reached a consensus on all interpretations. The RNAscope technique was positive in 89% (24/27) and the p16 IHC was positive in 78% (21/27). The RNAscope was negative in 11.1% of samples (3/27) and the p16 IHC-negative in 22.2% (6/27). The RNA ISH detected 100% of the p16-positive IHC-stained slides and had a concordance of 88.9% (24/27). This easy to interpret automated staining method for 18 high-risk HPV genotypes is a feasible replacement for the indirect p16 IHC method.
Viruses
2022 Jul 26
Gunder, LC;Blaine-Sauer, S;Johnson, HR;Shin, MK;Auyeung, AS;Zhang, W;Leverson, GE;Ward-Shaw, ET;King, RE;McGregor, SM;Matkowskyj, KA;Lambert, PF;Carchman, EH;
PMID: 35893697 | DOI: 10.3390/v14081632
Diagnostic Histopathology
Moutasim KA, Robinson M, Thavaraj S.
PMID: 10.1016/j.mpdhp.2015.02.002
Oral oncology, 50(1):1–9.
Mirghani H1, Amen F2, Moreau F3, Guigay J4, Ferchiou M5, Melkane AE6, Hartl DM7, Lacau St Guily J (2014).
PMID: 24169585 | DOI: 10.1016/j.oraloncology.2013.10.008.
Head and neck pathology, 1–7.
Chernock RD, Nussenbaum B, Thorstad WL, Luo Y, Ma XJ, El-Mofty SK, Lewis JS Jr (2013).
PMID: 24151062.
Case Reports in Otolaryngology
2016 May 25
Brobst T, García J, Rowe Price KA, Gao G, Smith DI, Price D.
PMID: - | DOI: -
Abstract
Background:
Although alcohol and tobacco use are known risk factors for development of squamous cell carcinoma in the head and neck, human papillomavirus (HPV) has been increasingly associated with this group of cancers. We describe the case of a married couple who presented with HPV-positive oropharynx squamous cell carcinoma within two months of each other.
Methods:
Tumor biopsies were positive for p16 and high-risk HPV in both patients. Sanger sequencing showed a nearly identical HPV16 strain in both patients. Both patients received chemoradiation, and one patient also underwent transoral robotic tongue base resection with bilateral neck dissection.
Results:
Both patients showed no evidence of recurrent disease on follow-up PET imaging.
Conclusions:
New head and neck symptoms should be promptly evaluated in the partner of a patient with known HPV-positive oropharynx cancer. This case expands the limited current literature on concurrent presentation of HPV-positive oropharynx squamous cell carcinoma in couples.
Int J Mol Sci.
2018 Mar 16
Ilardi G, Russo D, Varricchio S, Salzano G, Dell'Aversana Orabona G, Napolitano V, Di Crescenzo RM, Borzillo A, Martino F, Merolla F, Mascolo M, Staibano S.
PMID: 29547549 | DOI: 10.3390/ijms19030883
Human Papilloma Virus (HPV) can play a causative role in the development of sinonasal tract malignancies. In fact, HPV may be the most significant causative agent implicated in sinonasal tumorigenesis and is implicated in as many as 21% of sinonasal carcinomas. To date, there are no definitive, reliable and cost-effective, diagnostic tests approved by the FDA for the unequivocal determination of HPV status in head and neck cancers. We followed an exhaustive algorithm to correctly test HPV infection, including a sequential approach with p16INK4a IHC, viral DNA genotyping and in situ hybridization for E6/E7 mRNA. Here, we report a case of sinonasal carcinoma with discordant results using HPV test assays. The tumor we describe showed an irregular immunoreactivity for p16INK4a, and it tested positive for HPV DNA; nevertheless, it was negative for HR-HPV mRNA. We discuss the possible meaning of this discrepancy. It would be advisable to test HPV transcriptional status of sinonasal carcinoma on a diagnostic routine basis, not only by p16INK4a IHC assay, but also by HPV DNA genotyping and HR-HPV mRNA assessment.
Br J Cancer
2019 Mar 20
Craig SG, Anderson LA, Schache AG, Moran M, Graham L, Currie K, Rooney K, Robinson M, Upile NS, Brooker R, Mesri M, Bingham V, McQuaid S, Jones T, McCance DJ, Salto-Tellez M, McDade SS and James JA
PMID: 30890775 | DOI: 10.1038/s41416-019-0414-9
Head & neck
2022 Jul 11
Bai, K;Norberg, SM;Sievers, C;Meyer, T;Friedman, J;Hinrichs, C;Allen, CT;
PMID: 35815785 | DOI: 10.1002/hed.27144
Journal of cutaneous pathology
2021 Mar 21
Moore, RF;Zhang, XR;Allison, DB;Rooper, LM;Campbell, AA;Eberhart, CG;
PMID: 33745190 | DOI: 10.1111/cup.13987
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com