Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (186)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (68) Apply HPV E6/E7 filter
  • HPV (18) Apply HPV filter
  • HPV-HR18 (14) Apply HPV-HR18 filter
  • TBD (12) Apply TBD filter
  • HPV18 (6) Apply HPV18 filter
  • 18 (5) Apply 18 filter
  • 31 (5) Apply 31 filter
  • HPV16 (4) Apply HPV16 filter
  • HPV16/18 (4) Apply HPV16/18 filter
  • MmuPV1 (4) Apply MmuPV1 filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • HPV HR18 (4) Apply HPV HR18 filter
  • HPV E6 / E7 (4) Apply HPV E6 / E7 filter
  • 33 (4) Apply 33 filter
  • 35 (4) Apply 35 filter
  • 39 (4) Apply 39 filter
  • 45 (4) Apply 45 filter
  • 51 (4) Apply 51 filter
  • 52 (4) Apply 52 filter
  • 56 (4) Apply 56 filter
  • 58 (4) Apply 58 filter
  • 59 (4) Apply 59 filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • E7 (3) Apply E7 filter
  • 26 (3) Apply 26 filter
  • E6/E7 (3) Apply E6/E7 filter
  • HPV 16 (3) Apply HPV 16 filter
  • 53 (3) Apply 53 filter
  • 66 (3) Apply 66 filter
  • 68 (3) Apply 68 filter
  • 73 (3) Apply 73 filter
  • 82 (3) Apply 82 filter
  • HPV16 E6/E7 (2) Apply HPV16 E6/E7 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • HR-HPV (2) Apply HR-HPV filter
  • Wnt16 (1) Apply Wnt16 filter
  • Axin2 (1) Apply Axin2 filter
  • EBV (1) Apply EBV filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter
  • HPV52 (1) Apply HPV52 filter
  • HPV58 (1) Apply HPV58 filter
  • HPV-HR7 (1) Apply HPV-HR7 filter
  • CPV16-E6/E7 (1) Apply CPV16-E6/E7 filter
  • E6 (1) Apply E6 filter
  • HER2 (1) Apply HER2 filter
  • Cd207 (1) Apply Cd207 filter
  • Krt10 (1) Apply Krt10 filter
  • Fabp5 (1) Apply Fabp5 filter

Product

  • RNAscope 2.0 Assay (34) Apply RNAscope 2.0 Assay filter
  • RNAscope (32) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (22) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (10) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Red assay (8) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (5) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (4) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope ISH Probe High Risk HPV (3) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • TBD (2) Apply TBD filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter

Research area

  • (-) Remove HPV filter HPV (186)
  • Cancer (158) Apply Cancer filter
  • Infectious Disease (99) Apply Infectious Disease filter
  • Infectious (4) Apply Infectious filter
  • Bone (1) Apply Bone filter
  • Contraceptives (1) Apply Contraceptives filter
  • Epidermodysplasia verruciformis (1) Apply Epidermodysplasia verruciformis filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease: Epstein-Barr virus (1) Apply Infectious Disease: Epstein-Barr virus filter
  • MPV (1) Apply MPV filter
  • Neuroscience (1) Apply Neuroscience filter
  • Other: Methods (1) Apply Other: Methods filter
  • Protocols (1) Apply Protocols filter
  • Reproduction (1) Apply Reproduction filter
  • therapeutics (1) Apply therapeutics filter

Category

  • Publications (186) Apply Publications filter
Association of recurrent APOBEC3B alterations with the prognosis of gastric-type cervical adenocarcinoma

Gynecologic oncology

2022 Feb 09

Liao, X;Xia, X;Su, W;Yan, H;Ma, Y;Xu, L;Luo, H;Liu, W;Yin, D;Zhang, WH;Chen, HN;Deng, Y;Ren, Z;Yu, Z;Liao, F;Chen, K;Cao, M;Zhang, Y;Zhang, W;Wang, W;Zhao, JN;Xu, H;Shu, Y;
PMID: 35151492 | DOI: 10.1016/j.ygyno.2022.01.036

Gastric-type cervical adenocarcinoma (GCA) is a rare and aggressive type of endocervical adenocarcinoma (ECA) with distinct histopathologic features and unfavorable treatment outcomes, but no genomic prognostic factor has been revealed. We aimed to systematically investigate the somatic alterations of GCA at genome-wide level and evaluate their prognostic value.We performed whole-exome sequencing (WES) on 25 pairs of tumor and matched normal samples to characterize the genomic features of Chinese patients with GCA and investigated their relations to histopathological characterizations and prognosis. The prognostic value of the genomic alterations was evaluated in a total of 58 GCA patients.Mutations were commonly observed in reported GCA-related driver genes, including TP53 (32%), CDKN2A (20%), SKT11 (20%), BRCA2 (12%), SMAD4 (12%), and ERBB2 (12%). Recurrent novel trunk mutations were also observed in PBRM1 (12%), FRMPD4 (12%), and NOP2 (8%) with high variant allele frequency. Moreover, enrichment of the APOBEC signature was attributed to frequent gain of somatic copy number alteration (SCNA) of APOBEC3B (20%), which perfectly matched the nuclear-positive staining of APOBEC3B through immunohistochemistry. In contrast, APOBEC3B alteration was absent in patients with conventional type of ECA (N = 52). Notably, positive APOBEC3B was consistently enriched in patients with favorable prognosis in both the discovery cohort and an additional 33 GCA patients, thus indicating a significant association with lower relapse risk of GCA independent of cancer stage (P = 0.02).Our results can aid understanding of the molecular basis of GCA in the Chinese population by providing genomic profiles and highlighting the potential prognostic value of APOBEC3B for GCA through routine clinical IHC.
RNA Chromogenic in situ Hybridization Assay with Clinical Automated Platform is a Sensitive Method in Detecting High-risk Human Papillomavirus in Squamous Cell Carcinoma

Human Pathology

2017 Mar 14

Mendez-Pena JE, Sadow PM, Vania Nose VN, Hoang MP.
PMID: 28302536 | DOI: 10.1016/j.humpath.2017.02.021

Detection of active human papillomavirus (HPV) is clinically important, as its presence has been shown to correlate with favorable clinical outcomes and better response to treatment in oropharyngeal squamous cell carcinomas (SCC). Using a clinical automated platform, we compared the performance of commercially available HPV DNA and RNA in situ hybridization (ISH) probes in archival tissues of 57 SCC. Importantly, a clinical automated platform gives 1) consistent and reproducible results for HPV ISH and 2) better standardization across clinical laboratories. Compared to polymerase chain reaction (PCR) results, RNA ISH exhibited 93% concordance versus 81% of DNA ISH. RNA ISH was more sensitive than DNA ISH (100% versus 88%), and more specific (87% versus 74%). When only accounting for 2-3+ positivity, sensitivity was 92% for RNA ISH versus 73% for DNA ISH, highlighting the ease of interpretation. p16 exhibited 96% sensitivity while specificity was only 55%. In 3 cases both RNA and DNA ISH were positive while PCR results were negative, suggesting that ISH methods might be a more sensitive method. Performing on a clinical automated platform, RNA ISH is sensitive in determining high-risk HPV status in formalin-fixed paraffin-embedded tissues and has the potential of being a standalone clinical test.

Automated RNA In Situ Hybridization for 18 High Risk Human Papilloma Viruses in Squamous Cell Carcinoma of the Head and Neck: Comparison With p16 Immunohistochemistry.

Appl Immunohistochem Mol Morphol.

2017 Aug 02

Drumheller B, Cohen C, Lawson D, Siddiqui MT.
PMID: 28777152 | DOI: 10.1097/PAI.0000000000000550

Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein. A direct clinical comparison between p16 IHC and an automated RNA ISH using 18 probes has not been established. Samples from 27 formalin-fixed, paraffin-embedded HNSCC cases from the Emory University Hospital archives were stained using 18 individual RNA ISH probes for high-risk HPV (RNAscope 2.5 LS Probe ) on a Leica autostainer (Buffalo Grove, IL) and were compared with p16 IHC. Two pathologists reviewed and reached a consensus on all interpretations. The RNAscope technique was positive in 89% (24/27) and the p16 IHC was positive in 78% (21/27). The RNAscope was negative in 11.1% of samples (3/27) and the p16 IHC-negative in 22.2% (6/27). The RNA ISH detected 100% of the p16-positive IHC-stained slides and had a concordance of 88.9% (24/27). This easy to interpret automated staining method for 18 high-risk HPV genotypes is a feasible replacement for the indirect p16 IHC method.

Efficacy of Topically Administered Dihydroartemisinin in Treating Papillomavirus-Induced Anogenital Dysplasia in Preclinical Mouse Models

Viruses

2022 Jul 26

Gunder, LC;Blaine-Sauer, S;Johnson, HR;Shin, MK;Auyeung, AS;Zhang, W;Leverson, GE;Ward-Shaw, ET;King, RE;McGregor, SM;Matkowskyj, KA;Lambert, PF;Carchman, EH;
PMID: 35893697 | DOI: 10.3390/v14081632

The artemisinin family of compounds is cytopathic in certain cancer cell lines that are positive for human papillomaviruses (HPV) and can potentially drive the regression of dysplastic lesions. We evaluated the efficacy of topical dihydroartemisinin (DHA) on cervical dysplasia and anal dysplasia in two papillomavirus mouse models: K14E6/E7 transgenic mice, which express HPV16 oncogenes; and immunodeficient NOD/SCID gamma (NSG) mice infected with Mus musculus papillomavirus (MmuPV1). Mice started treatment with DHA at 25 weeks of age (K14E6/E7) or 20 weeks post infection (MmuPV1-infected), when the majority of mice are known to have papillomavirus-induced low- to high-grade dysplasia. Mice were treated with or without topical DHA at the cervix or anus and with or without topical treatment with the chemical carcinogen 7,12 dimethylbenz(a)anthracene (DMBA) at the anus of in transgenic mice to induce neoplastic progression. Mice were monitored for overt tumor growth, and tissue was harvested after 20 weeks of treatment and scored for severity of histological disease. For MmuPV1-infected mice, anogenital lavages were taken to monitor for viral clearance. Tissues were also evaluated for viral gene expression at the RNA and/or protein levels. Treatment with topical DHA did not reduce dysplasia in the anogenital tract in either papillomavirus-induced mouse model and did not prevent progression to anal cancer in the DMBA-treated K14E6/E7 mice.
Human papillomavirus testing in diagnostic head and neck histopathology

Diagnostic Histopathology

Moutasim KA, Robinson M, Thavaraj S.
PMID: 10.1016/j.mpdhp.2015.02.002

Assessment of human papillomavirus (HPV) status is a requirement for the diagnosis of HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) and metastatic squamous cell carcinoma in cervical lymph nodes where the location of the primary neoplasm is unknown. Within the diagnostic histopathology laboratory, there should be a validated and reproducible HPV testing strategy that can provide HPV status within a reasonable timeframe to inform patient care. Although these requirements are recognized by the head and neck oncology community, there is no internationally accepted standard for HPV testing. A two-tiered approach incorporating p16 immunohistochemistry with specific HPV testing by DNA in situ hybridization is a pragmatic way of providing HPV testing in clinical practice. A novel RNA in situ hybridization methodology targeting E6 and E7 mRNA has been validated and is likely to be available as an in vitro diagnostic device soon. This review will outline the current concepts around the diagnosis of HPV-associated head and neck SCC and suggest a diagnostic algorithm that can be instituted in most diagnostic cellular pathology laboratories.
Human papilloma virus testing in oropharyngeal squamous cell carcinoma: What the clinician should know.

Oral oncology, 50(1):1–9.

Mirghani H1, Amen F2, Moreau F3, Guigay J4, Ferchiou M5, Melkane AE6, Hartl DM7, Lacau St Guily J (2014).
PMID: 24169585 | DOI: 10.1016/j.oraloncology.2013.10.008.

High risk Human Papilloma virus (HR-HPV) associated oropharyngeal cancers are on the increase. Although, the scientific community is aware of the importance of Human Papilloma Virus (HPV) testing, there is no consensus on the assays that are required to reliably identify HR-HPV related tumors. A wide range of methods have been developed. The most widely used techniques include viral DNA detection, with polymerase chain reaction (PCR) or In Situ Hybridization, and p16 detected by immunohistochemistry. However, these tests provide different information and have their own specific limitations. In this review, we summarize these different techniques, in light of the recent literature. p16 Overexpression, which is an indirect marker of HPV infection, is considered by many head and neck oncologists to be the most important marker for patient stratification. We describe the frequent lack of concordance of this marker with other assays and the possible reasons for this. The latest developments in HPV testing are also reported, such as the RNAscope™ HPV test, and how they fit into the existing framework of techniques. HPV testing must not be considered in isolation, as there are important interactions with other parameters, such as tobacco exposure. This is an important and rapidly evolving field and is likely to become pivotal to staging and choice of treatment of oropharyngeal carcinoma in the future.
Extensive HPV-Related Carcinoma In Situ of the Upper Aerodigestive Tract with ‘Nonkeratinizing’Histologic Features.

Head and neck pathology, 1–7.

Chernock RD, Nussenbaum B, Thorstad WL, Luo Y, Ma XJ, El-Mofty SK, Lewis JS Jr (2013).
PMID: 24151062.

Over the past several decades, it has become clear that human papillomavirus (HPV) is important for the development and progression of many head and neck squamous cell carcinomas, particularly those arising in the oropharyngeal tonsillar crypts. Yet, our understanding of HPV's role in premalignant squamous lesions remains relatively poor. This is in part because premalignant lesions of the oropharyngeal tonsillar crypt tissue, where most HPV-related carcinomas arise, are difficult if not impossible to identify. Recent evidence does suggest a role for HPV in a subset of premalignant lesions of the surface epithelium, especially the oral cavity, despite the rarity of HPV-related invasive squamous cell carcinomas at this site. Furthermore, these HPV-related oral cavity dysplasias appear to have unique, bowenoid histologic features described as 'basaloid' with full-thickness loss of squamous maturation, mitotic figures and apoptosis throughout. Here, we present a unique case of an HPV-related premalignant lesion (squamous cell carcinoma in situ) extensively involving the surface epithelium of the oral cavity, oropharynx and larynx that had 'nonkeratinizing' histologic features typical of HPV-related invasive squamous cell carcinoma. This case was strongly p16 positive by immunohistochemistry and harbored transcriptionally active HPV as demonstrated by E6/E7 RNA in situ hybridization. Furthermore, the patient had an excellent response to radiation treatment.
Concurrent human papillomavirus-positive squamous cell carcinoma of the oropharynx in a married couple

Case Reports in Otolaryngology

2016 May 25

Brobst T, García J, Rowe Price KA, Gao G, Smith DI, Price D.
PMID: - | DOI: -

Abstract
Background:

Although alcohol and tobacco use are known risk factors for development of squamous cell carcinoma in the head and neck, human papillomavirus (HPV) has been increasingly associated with this group of cancers. We describe the case of a married couple who presented with HPV-positive oropharynx squamous cell carcinoma within two months of each other.

Methods:

Tumor biopsies were positive for p16 and high-risk HPV in both patients. Sanger sequencing showed a nearly identical HPV16 strain in both patients. Both patients received chemoradiation, and one  patient also underwent transoral robotic tongue base resection with bilateral neck dissection.

Results:

Both patients showed no evidence of recurrent disease on follow-up PET imaging.

Conclusions:

New head and neck symptoms should be promptly evaluated in the partner of a patient with known HPV-positive oropharynx cancer. This case expands the limited current literature on concurrent presentation of HPV-positive oropharynx squamous cell carcinoma in couples. 

HPV Virus Transcriptional Status Assessment in a Case of Sinonasal Carcinoma.

Int J Mol Sci.

2018 Mar 16

Ilardi G, Russo D, Varricchio S, Salzano G, Dell'Aversana Orabona G, Napolitano V, Di Crescenzo RM, Borzillo A, Martino F, Merolla F, Mascolo M, Staibano S.
PMID: 29547549 | DOI: 10.3390/ijms19030883

Human Papilloma Virus (HPV) can play a causative role in the development of sinonasal tract malignancies. In fact, HPV may be the most significant causative agent implicated in sinonasal tumorigenesis and is implicated in as many as 21% of sinonasal carcinomas. To date, there are no definitive, reliable and cost-effective, diagnostic tests approved by the FDA for the unequivocal determination of HPV status in head and neck cancers. We followed an exhaustive algorithm to correctly test HPV infection, including a sequential approach with p16INK4a IHC, viral DNA genotyping and in situ hybridization for E6/E7 mRNA. Here, we report a case of sinonasal carcinoma with discordant results using HPV test assays. The tumor we describe showed an irregular immunoreactivity for p16INK4a, and it tested positive for HPV DNA; nevertheless, it was negative for HR-HPV mRNA. We discuss the possible meaning of this discrepancy. It would be advisable to test HPV transcriptional status of sinonasal carcinoma on a diagnostic routine basis, not only by p16INK4a IHC assay, but also by HPV DNA genotyping and HR-HPV mRNA assessment.

Recommendations for determining HPV status in patients with oropharyngeal cancers under TNM8 guidelines: a two-tier approach

Br J Cancer

2019 Mar 20

Craig SG, Anderson LA, Schache AG, Moran M, Graham L, Currie K, Rooney K, Robinson M, Upile NS, Brooker R, Mesri M, Bingham V, McQuaid S, Jones T, McCance DJ, Salto-Tellez M, McDade SS and James JA
PMID: 30890775 | DOI: 10.1038/s41416-019-0414-9

BACKGROUND: TNM8 staging for oropharyngeal squamous cell carcinomas (OPSCC) surrogates p16 immunohistochemistry for HPV testing. Patients with p16+ OPSCC may lack HPV aetiology. Here, we evaluate the suitability of TNM8 staging for guiding prognosis in such patients. METHODS: HPV status was ascertained using p16 immunohistochemistry and high-risk HPV RNA and DNA in situ hybridisation. Survival by stage in a cohort of OPSCC patients was evaluated using TNM7/TNM8 staging. Survival of p16+/HPV- patients was compared to p16 status. RESULTS: TNM8 staging was found to improve on TNM7 (log rank p = 0.0190 for TNM8 compared with p = 0.0530 for TNM7) in p16+ patients. Patients who tested p16+ but were HPV- (n = 20) had significantly reduced five-year survival (33%) compared to p16+ patients (77%) but not p16- patients (35%). Cancer stage was reduced in 95% of p16+/HPV- patients despite having a mortality rate twice (HR 2.66 [95% CI: 1.37-5.15]) that of p16+/HPV+ patients under new TNM8 staging criteria. CONCLUSION: Given the significantly poorer survival of p16+/HPV- OPSCCs, these data provide compelling evidence for use of an HPV-specific test for staging classification. This has particular relevance in light of potential treatment de-escalation that could expose these patients to inappropriately reduced treatment intensity as treatment algorithms evolve.
Durable response in a patient with recurrent respiratory papillomatosis treated with immune checkpoint blockade

Head & neck

2022 Jul 11

Bai, K;Norberg, SM;Sievers, C;Meyer, T;Friedman, J;Hinrichs, C;Allen, CT;
PMID: 35815785 | DOI: 10.1002/hed.27144

Immune checkpoint blockade can provide clinical benefit for patients with advanced cancer. Here, we report durable disease control over many years following PD-L1 blockade through induction of a viral antigen-specific T cell response in an adult patient with recurrent respiratory papillomatosis.Antigen-specific T cell response assays, single cell RNA-sequencing, and RNA-scope was used to study clinical tissues.An HPV6 E2-specific T cell clone restricted to HLA-B*55, present at low frequency in the pre-treatment papilloma, significantly expanded after six doses of PD-L1 blockade and remained present and functional at the site of initial response in the larynx as a tissue resident memory T cell for 4 years. An associated reduction in E2 target gene was observed following treatment.Although demonstrated in a single exceptional responder, these results highlight that immune checkpoint blockade may induce durable, viral antigen-specific immunity of sufficient magnitude to control disease in patients with nonmalignant disorders.
High-risk human papillomavirus and ZEB1 in ocular adnexal sebaceous carcinoma

Journal of cutaneous pathology

2021 Mar 21

Moore, RF;Zhang, XR;Allison, DB;Rooper, LM;Campbell, AA;Eberhart, CG;
PMID: 33745190 | DOI: 10.1111/cup.13987

Ocular adnexal (OA) sebaceous carcinoma is an aggressive malignancy. Oncologic drivers of ocular sebaceous carcinoma are incompletely understood. A retrospective search of our pathology archives for OA sebaceous carcinoma identified 18 primary resection specimens. Immunohistochemistry for p16 and ZEB1 and RNA in situ hybridization for high-risk human papillomavirus (HPV) subtypes were performed. High-risk HPV was demonstrated in 2/11 (18%) cases. p16 overexpression was observed in 10/11 (91%). No association between gender, age at presentation, tumor location, intraepithelial spread, tumor size, and T stage was observed between HPV-driven and nonviral cases. High expression of ZEB1 was observed in the intraepithelial component of 4/14 (28%) cases and in the subepithelial component of 1/13 (7%) cases. ZEB1 overexpression was not associated with HPV-status, T stage, or tumor size. As previously described by others, our findings suggest that a subset of OA sebaceous carcinomas may arise via an HPV-dependent pathway. However, unlike high-risk HPV-driven carcinomas of the oropharynx, we did not identify an association between HPV-status and prognostic features. Furthermore, p16 expression was not a useful surrogate marker for HPV-driven disease. ZEB1 overexpression is not associated with HPV in our cohort of ocular sebaceous carcinoma.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?