Cammareri P, Vincent DF, Hodder MC, Ridgway RA, Murgia C, Nobis M, Campbell AD, Varga J, Huels DJ, Subramani C, Prescott KLH, Nixon C, Hedley A, Barry ST, Greten FR, Inman GJ, Sansom OJ.
PMID: 28622298 | DOI: 10.1038/cdd.2017.92
Recent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells (ISCs) and tumour-initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-κB pathway can drive dedifferentiation of intestinal cells lacking Apc. To investigate this process further, we profiled both cells undergoing dedifferentiation in vitro and tumours generated from these cells in vivo by gene expression analysis. Remarkably, no clear differences were observed in the tumours; however, during dedifferentiation in vitro we found a marked upregulation of TGFβ signalling, a pathway commonly mutated in colorectal cancer (CRC). Genetic inactivation of TGFβ type 1 receptor (Tgfbr1/Alk5) enhanced the ability of KrasG12D/+ mutation to drive dedifferentiation and markedly accelerated tumourigenesis. Mechanistically this is associated with a marked activation of MAPK signalling. Tumourigenesis from differentiated compartments is potently inhibited by MEK inhibition. Taken together, we show that tumours arising in differentiated compartments will be exposed to different suppressive signals, for example, TGFβ and blockade of these makes tumourigenesis more efficient from this compartment.
Moll F, Walter M ,Rezende F, Helfinger V, Vasconez E, De Oliveira T, Greten FR, Olesch C, Weigert A, Radeke HH, Schröder K.
PMID: - | DOI: 10.3389/fimmu.2018.00973
Aim: Reactive oxygen species (ROS) produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut.
Results: NoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS)-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells.
Conclusion: NoxO1 affects colon epithelium homeostasis and prevents inflammation.
Cell 175, 1–14, November 15, 2018
Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, Su CW, Smillie C, Shekhar K, Chen Z, Wu C, Ordovas-Montanes J, Alvarez D, Herbst RH, Zhang M, Tirosh I, Dionne D, Nguyen LT, Xifaras ME, Shalek AK, von Andrian UH, Graham DB, Rozenblatt-Rosen O, Shi HN, Kuchroo V, Yilmaz OH, Regev A, Xavier RJ.
PMID: - | DOI: 10.1016/j.cell.2018.10.008
Summary In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.
The Institute of Cancer Research (2018)
Menon M, Elliott RJ, Bowers L, Balan N, Rafiq R, Costa-Cabral S, Munkonge F, Trinidade I, Ashworth A, Lord C.
Inhibition of the PARP superfamily tankyrase enzymes suppresses Wnt/b-catenin signalling in tumour cells. Here, we describe here a novel, drug-like small molecule inhibitor of tankyrase MSC2504877 that inhibits the growth of APC mutant colorectal tumour cells. Parallel siRNA and drug sensitivity screens showed that the clinical CDK4/6 inhibitor palbociclib, causes enhanced sensitivity to MSC2504877. This tankyrase inhibitor-CDK4/6 inhibitor combinatorial effect is not limited to palbociclib and MSC2504877 and is elicited with other CDK4/6 inhibitors and toolbox tankyrase inhibitors. The addition of MSC2504877 to palbociclib enhances G1 cell cycle arrest and cellular senescence in tumour cells. MSC2504877 exposure suppresses the upregulation of Cyclin D2 and Cyclin E2 caused by palbociclib and enhances the suppression of phospho-Rb, providing a mechanistic explanation for these effects. The combination of MSC2504877 and palbociclib was also effective in suppressing the cellular hyperproliferative phenotype seen in Apc defective intestinal stem cells in vivo. However, the presence of an oncogenic Kras p.G12D mutation in mice reversed the effects of the MSC2504877/palbociclib combination, suggesting one molecular route that could lead to drug resistance.
Navis M, Martins Garcia T, Renes IB, Vermeulen JLM, Meisner S, Wildenberg ME, van den Brink GR, van Elburg RM, Muncan V.
PMID: 30530633 | DOI: 10.15252/embr.201846221
During the suckling‐to‐weaning transition, the intestinal epithelium matures, allowing digestion of solid food. Transplantation experiments with rodent fetal epithelium into subcutaneous tissue of adult animals suggest that this transition is intrinsically programmed and occurs in the absence of dietary or hormonal signals. Here, we show that organoids derived from mouse primary fetal intestinal epithelial cells express markers of late fetal and neonatal development. In a stable culture medium, these fetal epithelium‐derived organoids lose all markers of neonatal epithelium and start expressing hallmarks of adult epithelium in a time frame that mirrors epithelial maturation in vivo. In vitro postnatal development of the fetal‐derived organoids accelerates by dexamethasone, a drug used to accelerate intestinal maturation in vivo. Together, our data show that organoids derived from fetal epithelium undergo suckling‐to‐weaning transition, that the speed of maturation can be modulated, and that fetal organoids can be used to model the molecular mechanisms of postnatal epithelial maturation.
Zhao B, Chen Y, Jiang N, Yang L, Sun S, Zhang Y, Wen Z, Ray L, Liu H, Hou G, Lin X.
PMID: 30842416 | DOI: 10.1038/s41467-019-09060-w
Lgr5+ stem cells are crucial to gut epithelium homeostasis; however, how these cells are maintained is not fully understood. Zinc finger HIT-type containing 1 (Znhit1) is an evolutionarily conserved subunit of the SRCAP chromosome remodeling complex. Currently, the function of Znhit1 in vivo and its working mechanism in the SRCAP complex are unknown. Here we show that deletion of Znhit1 in intestinal epithelium depletes Lgr5+ stem cells thus disrupts intestinal homeostasis postnatal establishment and maintenance. Mechanistically, Znhit1 incorporates histone variant H2A.Z into TSS region of genes involved in Lgr5+ stem cell fate determination, including Lgr5, Tgfb1 and Tgfbr2, for subsequent transcriptional regulation. Importantly, Znhit1 promotes the interaction between H2A.Z and YL1 (H2A.Z chaperone) by controlling YL1 phosphorylation. These results demonstrate that Znhit1/H2A.Z is essential for Lgr5+ stem cell maintenance and intestinal homeostasis. Our findings identified a dominant role of Znhit1/H2A.Z in controlling mammalian organ development and tissue homeostasis in vivo.
Kim JE Fei L, Yin WC, Coquenlorge S, Rao-Bhatia A, Zhang X, Shi SSW, Lee JH, Hahn NA, Rizvi W, Kim KH, Sung HK, Hui CC, Guo G, Kim TH
PMID: 31953387 | DOI: 10.1038/s41467-019-14058-5
Stomach and intestinal stem cells are located in discrete niches called the isthmus and crypt, respectively. Recent studies have demonstrated a surprisingly conserved role for Wnt signaling in gastrointestinal development. Although intestinal stromal cells secrete Wnt ligands to promote stem cell renewal, the source of stomach Wnt ligands is still unclear. Here, by performing single cell analysis, we identify gastrointestinal stromal cell populations with transcriptome signatures that are conserved between the stomach and intestine. In close proximity to epithelial cells, these perictye-like cells highly express telocyte and pericyte markers as well as Wnt ligands, and they are enriched for Hh signaling. By analyzing mice activated for Hh signaling, we show a conserved mechanism of GLI2 activation of Wnt ligands. Moreover, genetic inhibition of Wnt secretion in perictye-like stromal cells or stromal cells more broadly demonstrates their essential roles in gastrointestinal regeneration and development, respectively, highlighting a redundancy in gastrointestinal stem cell niches.
The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation
Cellular and molecular gastroenterology and hepatology
Stokes, K;Nunes, M;Trombley, C;Flôres, DEFL;Wu, G;Taleb, Z;Alkhateeb, A;Banskota, S;Harris, C;Love, OP;Khan, WI;Rueda, L;Hogenesch, JB;Karpowicz, P;
PMID: 34534703 | DOI: 10.1016/j.jcmgh.2021.08.001
Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known.We tested the non-redundant clock gene, Bmal1, in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer.Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod-disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal non-transformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA-sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal.Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors exhibit high Yap (Hippo signaling) activity but exhibit low Wnt activity. Intestinal organoid assays reveal that loss of Bmal1 increases self-renewal in a Yap-dependent manner.Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation.
Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling
Zhang, SX;Lutas, A;Yang, S;Diaz, A;Fluhr, H;Nagel, G;Gao, S;Andermann, ML;
PMID: 34433964 | DOI: 10.1038/s41586-021-03845-0
Transient neuromodulation can have long-lasting effects on neural circuits and motivational states1-4. Here we examine the dopaminergic mechanisms that underlie mating drive and its persistence in male mice. Brief investigation of females primes a male's interest to mate for tens of minutes, whereas a single successful mating triggers satiety that gradually recovers over days5. We found that both processes are controlled by specialized anteroventral and preoptic periventricular (AVPV/PVpo) dopamine neurons in the hypothalamus. During the investigation of females, dopamine is transiently released in the medial preoptic area (MPOA)-an area that is critical for mating behaviours. Optogenetic stimulation of AVPV/PVpo dopamine axons in the MPOA recapitulates the priming effect of exposure to a female. Using optical and molecular methods for tracking and manipulating intracellular signalling, we show that this priming effect emerges from the accumulation of mating-related dopamine signals in the MPOA through the accrual of cyclic adenosine monophosphate levels and protein kinase A activity. Dopamine transients in the MPOA are abolished after a successful mating, which is likely to ensure abstinence. Consistent with this idea, the inhibition of AVPV/PVpo dopamine neurons selectively demotivates mating, whereas stimulating these neurons restores the motivation to mate after sexual satiety. We therefore conclude that the accumulation or suppression of signals from specialized dopamine neurons regulates mating behaviours across minutes and days.
Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage
Fazilaty, H;Brügger, MD;Valenta, T;Szczerba, BM;Berkova, L;Doumpas, N;Hausmann, G;Scharl, M;Basler, K;
PMID: 34348153 | DOI: 10.1016/j.celrep.2021.109484
We lack a holistic understanding of the genetic programs orchestrating embryonic colon morphogenesis and governing damage response in the adult. A window into these programs is the transcriptomes of the epithelial and mesenchymal cell populations in the colon. Performing unbiased single-cell transcriptomic analyses of the developing mouse colon at different embryonic stages (embryonic day 14.5 [E14.5], E15.5, and E18.5), we capture cellular and molecular profiles of the stages before, during, and after the appearance of crypt structures, as well as in a model of adult colitis. The data suggest most adult lineages are established by E18.5. We find embryonic-specific gene expression profiles and cell populations that reappear in response to tissue damage. Comparison of the datasets from mice and human colitis suggests the processes are conserved. In this study, we provide a comprehensive single-cell atlas of the developing mouse colon and evidence for the reactivation of embryonic genes in disease.
An unsupervised method for physical cell interaction profiling of complex tissues
Andrews, N;Serviss, JT;Geyer, N;Andersson, AB;Dzwonkowska, E;Šutevski, I;Heijboer, R;Baryawno, N;Gerling, M;Enge, M;
PMID: 34253926 | DOI: 10.1038/s41592-021-01196-2
Cellular identity in complex multicellular organisms is determined in part by the physical organization of cells. However, large-scale investigation of the cellular interactome remains technically challenging. Here we develop cell interaction by multiplet sequencing (CIM-seq), an unsupervised and high-throughput method to analyze direct physical cell-cell interactions between cell types present in a tissue. CIM-seq is based on RNA sequencing of incompletely dissociated cells, followed by computational deconvolution into constituent cell types. CIM-seq estimates parameters such as number of cells and cell types in each multiplet directly from sequencing data, making it compatible with high-throughput droplet-based methods. When applied to gut epithelium or whole dissociated lung and spleen, CIM-seq correctly identifies known interactions, including those between different cell lineages and immune cells. In the colon, CIM-seq identifies a previously unrecognized goblet cell subtype expressing the wound-healing marker Plet1, which is directly adjacent to colonic stem cells. Our results demonstrate that CIM-seq is broadly applicable to unsupervised profiling of cell-type interactions in different tissue types.
Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis
Leach, JDG;Vlahov, N;Tsantoulis, P;Ridgway, RA;Flanagan, DJ;Gilroy, K;Sphyris, N;Vázquez, EG;Vincent, DF;Faller, WJ;Hodder, MC;Raven, A;Fey, S;Najumudeen, AK;Strathdee, D;Nixon, C;Hughes, M;Clark, W;Shaw, R;S:CORT consortium, ;van Hooff, SR;Huels, DJ;Medema, JP;Barry, ST;Frame, MC;Unciti-Broceta, A;Leedham, SJ;Inman, GJ;Jackstadt, R;Thompson, BJ;Campbell, AD;Tejpar, S;Sansom, OJ;
PMID: 34103493 | DOI: 10.1038/s41467-021-23717-5
Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.