Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

Your search for "INS" returned results. Search for our Top genes LGR5, vglut2, gad67, brca1

    Refine Probe List

    Content for comparison

    Gene

    • TBD (1413) Apply TBD filter
    • (-) Remove Lgr5 filter Lgr5 (151)
    • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
    • Gad1 (90) Apply Gad1 filter
    • vGlut2 (80) Apply vGlut2 filter
    • HPV E6/E7 (78) Apply HPV E6/E7 filter
    • Slc17a6 (77) Apply Slc17a6 filter
    • Axin2 (74) Apply Axin2 filter
    • SLC32A1 (74) Apply SLC32A1 filter
    • FOS (73) Apply FOS filter
    • Sst (65) Apply Sst filter
    • TH (63) Apply TH filter
    • VGAT (58) Apply VGAT filter
    • Gad2 (54) Apply Gad2 filter
    • tdTomato (54) Apply tdTomato filter
    • DRD2 (53) Apply DRD2 filter
    • Slc17a7 (52) Apply Slc17a7 filter
    • GLI1 (51) Apply GLI1 filter
    • PVALB (47) Apply PVALB filter
    • egfp (46) Apply egfp filter
    • ZIKV (46) Apply ZIKV filter
    • (-) Remove DRD1 filter DRD1 (42)
    • GFAP (39) Apply GFAP filter
    • COL1A1 (38) Apply COL1A1 filter
    • Crh (37) Apply Crh filter
    • Chat (37) Apply Chat filter
    • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
    • Pomc (34) Apply Pomc filter
    • PDGFRA (33) Apply PDGFRA filter
    • Il-6 (33) Apply Il-6 filter
    • Cre (33) Apply Cre filter
    • AGRP (32) Apply AGRP filter
    • PECAM1 (32) Apply PECAM1 filter
    • Npy (32) Apply Npy filter
    • Wnt5a (31) Apply Wnt5a filter
    • CXCL10 (31) Apply CXCL10 filter
    • GLP1R (31) Apply GLP1R filter
    • Sox9 (29) Apply Sox9 filter
    • CD68 (28) Apply CD68 filter
    • Penk (28) Apply Penk filter
    • PD-L1 (28) Apply PD-L1 filter
    • ACTA2 (27) Apply ACTA2 filter
    • SHH (27) Apply SHH filter
    • VGluT1 (27) Apply VGluT1 filter
    • OLFM4 (26) Apply OLFM4 filter
    • GFP (26) Apply GFP filter
    • Rbfox3 (25) Apply Rbfox3 filter
    • MALAT1 (24) Apply MALAT1 filter
    • SOX2 (24) Apply SOX2 filter
    • Ccl2 (24) Apply Ccl2 filter

    Product

    • RNAscope Multiplex Fluorescent Assay (33) Apply RNAscope Multiplex Fluorescent Assay filter
    • RNAscope 2.5 HD Red assay (27) Apply RNAscope 2.5 HD Red assay filter
    • RNAscope Fluorescent Multiplex Assay (23) Apply RNAscope Fluorescent Multiplex Assay filter
    • RNAscope 2.0 Assay (20) Apply RNAscope 2.0 Assay filter
    • RNAscope (16) Apply RNAscope filter
    • RNAscope 2.5 LS Assay (11) Apply RNAscope 2.5 LS Assay filter
    • RNAscope 2.5 HD Brown Assay (10) Apply RNAscope 2.5 HD Brown Assay filter
    • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
    • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
    • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
    • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
    • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

    Research area

    • Cancer (61) Apply Cancer filter
    • Stem Cells (59) Apply Stem Cells filter
    • Neuroscience (37) Apply Neuroscience filter
    • Development (22) Apply Development filter
    • Stem cell (16) Apply Stem cell filter
    • Other (11) Apply Other filter
    • Inflammation (8) Apply Inflammation filter
    • Addiction (3) Apply Addiction filter
    • Behavior (3) Apply Behavior filter
    • behavioral (3) Apply behavioral filter
    • Developmental (3) Apply Developmental filter
    • Cancer Stem Cells (2) Apply Cancer Stem Cells filter
    • Feeding Behavior (2) Apply Feeding Behavior filter
    • Psychiatry (2) Apply Psychiatry filter
    • Colitis (1) Apply Colitis filter
    • Diet (1) Apply Diet filter
    • Endocrinology (1) Apply Endocrinology filter
    • Gastro (1) Apply Gastro filter
    • Grooming behavior dysfunction (1) Apply Grooming behavior dysfunction filter
    • Gut Microbiota (1) Apply Gut Microbiota filter
    • Human intestinal organoids (1) Apply Human intestinal organoids filter
    • Huntington’s Disease (1) Apply Huntington’s Disease filter
    • Infectious Disease (1) Apply Infectious Disease filter
    • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
    • Keratin (1) Apply Keratin filter
    • lncRNA (1) Apply lncRNA filter
    • Metabolic (1) Apply Metabolic filter
    • Metabolism (1) Apply Metabolism filter
    • Nueroscience (1) Apply Nueroscience filter
    • Obesity (1) Apply Obesity filter
    • OCD (1) Apply OCD filter
    • Organoid (1) Apply Organoid filter
    • Organoids (1) Apply Organoids filter
    • Other: Drug Development (1) Apply Other: Drug Development filter
    • Other: Hair Growth (1) Apply Other: Hair Growth filter
    • Other: Metabolism (1) Apply Other: Metabolism filter
    • Parkinson's Disease (1) Apply Parkinson's Disease filter
    • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
    • Radiation enteritis (1) Apply Radiation enteritis filter
    • Radiotherapy (1) Apply Radiotherapy filter
    • Regeneration (1) Apply Regeneration filter
    • Reproduction (1) Apply Reproduction filter
    • Reward Processing (1) Apply Reward Processing filter
    • Reward seeking (1) Apply Reward seeking filter
    • Sex Differences (1) Apply Sex Differences filter
    • Signalling (1) Apply Signalling filter
    • Stress (1) Apply Stress filter
    • Stress Related Eating (1) Apply Stress Related Eating filter
    • Tramautic Stress (1) Apply Tramautic Stress filter
    • Tumourigenesis (1) Apply Tumourigenesis filter

    Category

    • Publications (193) Apply Publications filter
    NHE8 deficiency promotes colitis-associated cancer in mice via expansion of Lgr5 expressing cells

    Cellular and Molecular Gastroenterology and Hepatology

    2018 Aug 24

    Xu H, Li J, Chen H, Ghishan FK.
    PMID: - | DOI: 10.1016/j.jcmgh.2018.08.005

    Abstract

    Background and Aims

    Lgr5 overexpression has been detected in colorectal cancers (CRCs), including some cases of colitis-associated CRCs. In colitis-associated CRCs, chronic inflammation is a contributing factor in carcinogenesis. We recently reported that intestinal sodium/hydrogen exchanger isoform 8 (NHE8) plays an important role in intestinal mucosal protection and that loss of NHE8 expression results in ulcerative colitis (UC)-like condition. Therefore, we hypothesized that NHE8 may be involved in the development of intestinal tumors.

    Methods

    We assessed NHE8 expression in human CRCs by IHC and studied tumor burden in NHE8KO mice using an AOM/DSS colon cancer model. We also evaluated cell proliferation in HT29NHE8KO cells and assessed tumor growth in NSG mice xenografted with HT29NHE8KO cells. To verify if a relationship exists between Lgr5 and NHE8 expression, we analyzed Lgr5 expression in NHE8KO mice by PCR and in situ hybridization. Lgr5 expression and cell proliferation in the absence of NHE8 were confirmed in colonic organoid cultures. The expression of β-catenin and c-Myc were also analyzed to evaluate Wnt/β-catenin activation.

    Results

    NHE8 was undetectable in human CRC tissues. Whereas only 9% of NHE8WT mice exhibited tumorigenesis in the AOM/DSS colon cancer model, almost ten times more NHE8KO mice (89%) developed tumors. In the absence of NHE8, a higher colony formation unit was discovered in HT29NHE8KO cells. In NSG mice, larger tumors developed at the site where HT29NHE8KO cells were injected compared to HT29NHE8WT cells. Furthermore, NHE8 deficiency resulted in elevated Lgr5 expression in the colon, in HT29 derived tumors, and in colonoids. The absence of NHE8 also increased Wnt/β-catenin activation.

    Conclusions

    NHE8 might be an intrinsic factor that regulates Wnt/β-catenin in the intestine.

    Expression of LGR5 in mammary myoepithelial cells and in triple-negative breast cancers

    Scientific reports

    2021 Sep 07

    Lee, HJ;Myung, JK;Kim, HS;Lee, DH;Go, HS;Choi, JH;Koh, HM;Lee, SJ;Jang, B;
    PMID: 34493772 | DOI: 10.1038/s41598-021-97351-y

    Lineage tracing in mice indicates that LGR5 is an adult stem cell marker in multiple organs, such as the intestine, stomach, hair follicles, ovary, and mammary glands. Despite many studies exploring the presence of LGR5 cells in human tissues, little is known about its expression profile in either human mammary tissue or pathological lesions. In this study we aim to investigate LGR5 expression in normal, benign, and malignant lesions of the human breast using RNA in situ hybridization. LGR5 expression has not been observed in normal lactiferous ducts and terminal duct lobular units, whereas LGR5-positive cells have been specifically observed in the basal myoepithelium of ducts in the regenerative tissues, ductal carcinoma in situ, and in ducts surrounded by invasive cancer cells. These findings suggest LGR5 marks facultative stem cells that are involved in post injury regeneration instead of homeostatic stem cells. LGR5 positivity was found in 3% (9 of 278 cases) of invasive breast cancers (BC), and it showed positive associations with higher histologic grades (P = 0.001) and T stages (P < 0.001), while having negative correlations with estrogen receptor (P < 0.001) and progesterone receptor (P < 0.001) expression. Remarkably, all LGR5-positive BC, except one, belong to triple-negative BC (TNBC), representing 24% (9 of 38 cases) of all of them. LGR5 histoscores have no correlations with EGFR, CK5/6, Ki-67, or P53 expression. Additionally, no β-catenin nuclear localization was observed in LGR5-positive BC, indicating that canonical Wnt pathway activation is less likely involved in LGR5 expression in BC. Our results demonstrate that LGR5 expression is induced in regenerative conditions in the myoepithelium of human mammary ducts and that its expression is only observed in TNBC subtype among all invasive BC. Further studies regarding the functional and prognostic impact of LGR5 in TNBC are warranted.
    Genetic labeling reveals spatial and cellular expression pattern of neuregulin 1 in mouse brain

    Cell & bioscience

    2023 May 05

    Ding, CY;Ding, YT;Ji, H;Wang, YY;Zhang, X;Yin, DM;
    PMID: 37147705 | DOI: 10.1186/s13578-023-01032-4

    Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed.Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated.In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum.Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
    Distribution of Lgr5-positive cancer cells in intramucosal gastric signet-ring cell carcinoma.

    Pathol Int.

    2016 Sep 01

    Nakajima T, Uehara T, Maruyama Y, Iwaya M, Kobayashi Y, Ota H.
    PMID: 27593551 | DOI: 10.1111/pin.12451

    Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is a putative intestinal stem cell marker that is also expressed in various tumors. To analyze its pathological characteristics in mucosal gastric signet-ring cell carcinoma (SRCC), we investigated Lgr5 expression in 35 intramucosal gastric SRCC patients using RNAscope, a newly developed RNA in situ hybridization technique. Lgr5 expression in individual tumor cells was scored semi-quantitatively from 0 to 400. Ki67 was also examined by immunohistochemistry, with a linear arrangement of Ki67-expressing cells present in 20 of 35 cases. This area of Ki67-expressing cells was topographically divided into upper, middle, and lower regions. All cases with linear Ki67 expression patterns also had Lgr5-positive cells arranged in a linear fashion in the lower area-which was distinct from the area of high Ki67 expression. The rate of Ki67 positivity in Lgr5-positive cells was significantly lower than that of Lgr5-negative cells in areas of high Ki67 expression. In intramucosal SRCC, the low mitotic activity of Lgr5-positive cells suggests that they may represent cancer stem cells as seen in other types of stomach carcinomas. Intramucosal SRCC may therefore contain stem cells expressing Lgr5 in the lower area of the lamina propria, akin to normal gastric pyloric mucosa.

    LGR5 expression and clinicopathological features of the invasive front in the fat infiltration area of pancreatic cancer

    Diagnostic pathology

    2022 Feb 05

    Kamakura, M;Uehara, T;Iwaya, M;Asaka, S;Kobayashi, S;Nakajima, T;Kinugawa, Y;Nagaya, T;Yoshizawa, T;Shimizu, A;Ota, H;Umemura, T;
    PMID: 35123536 | DOI: 10.1186/s13000-022-01203-w

    Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a strong cancer stem cell marker in colorectal cancer; however, there are many unclear aspects of LGR5 expression in pancreatic cancer. It has been reported that the interaction between tumor cells and stroma at the fat infiltration site has a significant effect on pancreatic cancer prognosis. Therefore, we report a clinicopathological study of LGR5 expression at the fat invasion front in pancreatic cancer.LGR5 expression was analyzed in 40 pancreatic ductal adenocarcinoma cases with RNAscope, which is a newly developed high-sensitivity in situ hybridization method. Epithelial-mesenchymal transition (EMT) was analyzed by the expression of E-cadherin and vimentin via immunohistochemistry.LGR5-positive dots were identified in all cases, especially with glandular formation. In the fat invasion front, a high histological grade showed significantly reduced LGR5 expression compared with a low histological grade (p=0.0126). LGR5 expression was significantly higher in the non-EMT phenotype group than in EMT phenotype group (p=0.0003). Additionally, LGR5 expression was significantly lower in cases with high vascular invasion than in those with low vascular invasion (p=0.0244).These findings suggest that decreased LGR5 expression in the fat invasion front is associated with more aggressive biological behavior in pancreatic ductal adenocarcinoma, with higher tumor grade, EMT phenotype, and higher vascular invasion.
    LGR5-Expressing Cells in the Healing Process of Post-ESD Ulcers in Gastric Corpus

    Digestive diseases and sciences

    2021 Jun 03

    Tobe, Y;Uehara, T;Nakajima, T;Iwaya, M;Kobayashi, Y;Kinugawa, Y;Kuraishi, Y;Ota, H;
    PMID: 34081250 | DOI: 10.1007/s10620-021-07059-2

    LGR5 is a promising stem cell marker in gastric pylorus, but there are few reports on its expression in human gastric corpus.To investigate the involvement of LGR5 expression in gastric corpus ulcer regeneration in humans.LGR5 expression was analyzed in five post-ESD ulcers during the healing process of regenerating epithelial cells of the gastric corpus. LGR5 expression was detected by mRNA in situ hybridization using an RNA scope kit. Immunohistochemistry of MUC6, HIK1083, and pepsinogen 1 (PG1) was performed to identify cell differentiation.We defined MUC6+/HIK1083-/PG1-, MUC6+/HIK1083+/PG1-, MUC6+/HIK1083+/PG1+, MUC6+/HIK1083-/PG1+, and MUC6-/HIK1083-/PG1+cells as pseudopyloric mucosa (PPM) phase 1 (PPM1), PPM phase 2 (PPM2), PPM phase 3 (PPM3), immature chief cells (ICC), and mature chief cells (MCC) in order from the ulcer center, respectively. In the regenerated mucosa around post-ESD ulcers, LGR5 expression was observed throughout the gland in PPM1-PPM3, but it was limited to the bottom of the gland in ICC and MCC. Furthermore, LGR5 expression was not identified in the normal gastric corpus. The H-score of PPM2 was significantly higher than that of PPM3 (P = 0.0313). The H-score of PPM3 was significantly higher than that of ICC (P = 0.0313). The LGR5 H-score was higher at the immature stage, which decreased gradually with progression of the differentiation stage.LGR5 expression appears to contribute to mucosal regeneration in the human gastric corpus. The application of LGR5 expression analysis to mucosal regeneration and fundic gland-type gastric tumors is expected.
    BCL-3 loss sensitises colorectal cancer cells to DNA damage by targeting homologous recombination

    DNA repair

    2022 Apr 16

    Parker, C;Chambers, AC;Flanagan, DJ;Ho, JWY;Collard, TJ;Ngo, G;Baird, DM;Timms, P;Morgan, RG;Sansom, OJ;Williams, AC;
    PMID: 35468497 | DOI: 10.1016/j.dnarep.2022.103331

    The proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC), where it has been shown to enhance tumour cell survival. However, although increased expression correlates with poor patient prognosis, the role of BCL-3 in determining therapeutic response remains largely unknown. In this study, we use combined approaches in multiple cell lines and pre-clinical mouse models to investigate the function of BCL-3 in the DNA damage response. We show that suppression of BCL-3 increases γH2AX foci formation and decreases homologous recombination in CRC cells, resulting in reduced RAD51 foci number and increased sensitivity to PARP inhibition. Importantly, a similar phenotype is seen in Bcl3-/- mice, where Bcl3-/- mouse crypts also exhibit sensitivity to DNA damage with increased γH2AX foci compared to wild type mice. Additionally, Apc.Kras-mutant x Bcl3-/- mice are more sensitive to cisplatin chemotherapy compared to wild type mice. Taken together, our results identify BCL-3 as a regulator of the cellular response to DNA damage and suggests that elevated BCL-3 expression, as observed in CRC, could increase resistance of tumour cells to DNA damaging agents including radiotherapy. These findings offer a rationale for targeting BCL-3 in CRC as an adjunct to conventional therapies and suggest that BCL-3 expression in tumours could be a useful biomarker in stratification of rectal cancer patients for neo-adjuvant chemoradiotherapy.
    Distinct expression profile of stem cell markers, LGR5 and LGR6, in basaloid skin tumors

    Virchows Arch.

    2017 Jan 09

    Jang BG, Lee C, Kim HS, Shin MS, Cheon MS, Kim JW, Kim WH.
    PMID: 28070642 | DOI: 10.1007/s00428-016-2061-3

    Mammalian epidermis, which is composed of hair follicles, sebaceous glands, and interfollicular epidermis, is maintained by discrete stem cells. In vivo lineage tracing demonstrated that murine LGR5 cells are mainly responsible for hair follicle regeneration whereas LGR6 cells generate sebaceous glands and interfollicular epidermis. However, little is known about their expression in the human skin tumors. In this study, we investigated the expression profile of LGR5 and LGR6 in a variety of human skin tumors including basaloid tumors with follicular differentiation (94 basal cell carcinomas, 18 trichoepitheliomas, 3 basaloid follicular hamartomas, and 12 pilomatricomas) and tumors with ductal differentiation (7 eccrine poromas, 8 hidradenomas, and 5 spiradenomas). LGR5 expression was highest in basal cell carcinomas (BCCs) followed by trichoepitheliomas (TEs) and basaloid follicular hamartomas. LGR6 had the same expression pattern as LGR5, even though its expression was lower. Interestingly, LGR6 expression was detected in stromal cells around the tumor and papillary mesenchymal bodies of TEs but not in stromal cells of BCCs, suggesting different characteristics of tumor-associated fibroblasts between TEs and BCCs. It was unexpected to find that pilomatricomas exclusively expressed LGR6, and its expression was limited to the basaloid cells. Notably, LGR6-positive cells were observed in sweat gland ductal cells in normal skin. This might explain, in part, the finding that LGR6 expression was relatively higher in basaloid tumors with ductal differentiation than in those with follicular differentiation. In particular, spiradenomas displayed the same distribution pattern of LGR6 as normal sweat glands, suggesting the possibility of LGR6-positive cells as tumor stem cells. In conclusion, we documented the different expression patterns of stem cell markers, LGR5 and LGR6 in various skin tumors. These data may provide important insights to understand the origin and development of basaloid skin tumors.

    Elevated prefrontal dopamine interferes with the stress-buffering properties of behavioral control in female rats

    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

    2022 Sep 08

    McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
    PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w

    Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
    Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine

    Cell & bioscience

    2021 Jun 22

    Xue, L;Bao, L;Roediger, J;Su, Y;Shi, B;Shi, YB;
    PMID: 34158114 | DOI: 10.1186/s13578-021-00627-z

    Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse.We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium.We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged.Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult.
    Expression Profile of LGR5 and Its Prognostic Significance in Colorectal Cancer Progression.

    Am J Pathol.

    2018 Jul 20

    Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH.
    PMID: 30036518 | DOI: 10.1016/j.ajpath.2018.06.012

    We investigated the expression profile of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) during colorectal cancer (CRC) progression and determined the prognostic impact of LGR5 in a large cohort of CRC samples. LGR5 expression was higher in CRCs than in normal mucosa, and was not associated with other cancer stem cell markers. LGR5 positivity was observed in 68% of 788 CRCs and was positively correlated with old age, well-to-moderate differentiation, and nuclear β-catenin expression. Enhanced LGR5 expression remained persistent during the adenoma-carcinoma transition, but markedly declined in the budding cancer cells at the invasive fronts, which was not due to altered Wnt or epithelial to mesenchymal transition signaling. LGR5 showed negative correlations with microsatellite instability and CpG island methylator phenotype, and was not associated with KRAS and BRAF mutations. Notably, LGR5 positivity was an independent prognostic marker for better clinical outcomes in CRC patients. LGR5 overexpression attenuated tumor growth by decreasing ERK phosphorylation along with decreased colony formation and migration abilities in DLD1 cells. Likewise, knockdown of LGR5 expression resulted in a decline in the colony- forming and migration capacities in LoVo cells. Taken together, our data suggest the suppressive role of LGR5 in CRC progression.

    Characterization of LGR5 expression in poorly differentiated colorectal carcinoma with mismatch repair protein deficiency

    BMC Cancer

    2020 Apr 15

    Nakajima T, Uehara T, Iwaya M, Kobayashi Y, Maruyama Y, Ota H
    PMID: 32293346 | DOI: 10.1186/s12885-020-06791-8

    BACKGROUND: Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a promising intestinal stem cell and carcinoma stem cell marker. We examined the relationship between mismatch repair (MMR) protein deficiency and LGR5 expression in poorly differentiated (PD) colorectal carcinoma (CRC). METHODS: In 29 cases of PD-CRC, deficiencies in MMR proteins (MLH1, PMS2, MSH2, MSH6) and ?-catenin expression were identified by immunohistochemistry (IHC). LGR5 expression was examined by the RNAscope assay in tissue microarrays. RESULTS: LGR5 H-scores in MMR-deficient (MMR-D) cases were significantly lower than those in MMR-proficient (MMR-P) cases (P?=?0.0033). Nuclear ?-catenin IHC scores in MMR-D cases were significantly lower than those in MMR-P cases (P?=?0.0024). In all cases, there was a positive correlation between LGR5 H-score and nuclear ?-catenin IHC score (r?=?0.6796, P?

    Pages

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • …
    • next ›
    • last »
    X
    Description
    sense
    Example: Hs-LAG3-sense
    Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
    Intron#
    Example: Mm-Htt-intron2
    Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
    Pool/Pan
    Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
    A mixture of multiple probe sets targeting multiple genes or transcripts
    No-XSp
    Example: Hs-PDGFB-No-XMm
    Does not cross detect with the species (Sp)
    XSp
    Example: Rn-Pde9a-XMm
    designed to cross detect with the species (Sp)
    O#
    Example: Mm-Islr-O1
    Alternative design targeting different regions of the same transcript or isoforms
    CDS
    Example: Hs-SLC31A-CDS
    Probe targets the protein-coding sequence only
    EnEmProbe targets exons n and m
    En-EmProbe targets region from exon n to exon m
    Retired Nomenclature
    tvn
    Example: Hs-LEPR-tv1
    Designed to target transcript variant n
    ORF
    Example: Hs-ACVRL1-ORF
    Probe targets open reading frame
    UTR
    Example: Hs-HTT-UTR-C3
    Probe targets the untranslated region (non-protein-coding region) only
    5UTR
    Example: Hs-GNRHR-5UTR
    Probe targets the 5' untranslated region only
    3UTR
    Example: Rn-Npy1r-3UTR
    Probe targets the 3' untranslated region only
    Pan
    Example: Pool
    A mixture of multiple probe sets targeting multiple genes or transcripts

    Enabling research, drug development (CDx) and diagnostics

    Contact Us
    • Toll-free in the US and Canada
    • +1877 576-3636
    • 
    • 
    • 
    Company
    • Overview
    • Leadership
    • Careers
    • Distributors
    • Quality
    • News & Events
    • Webinars
    • Patents
    Products
    • RNAscope or BaseScope
    • Target Probes
    • Controls
    • Manual assays
    • Automated Assays
    • Accessories
    • Software
    • How to Order
    Research
    • Popular Applications
    • Cancer
    • Viral
    • Pathways
    • Neuroscience
    • Other Applications
    • RNA & Protein
    • Customer Innovations
    • Animal Models
    Technology
    • Overview
    • RNA Detection
    • Spotlight Interviews
    • Publications & Guides
    Assay Services
    • Our Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    • Your Benefits
    • How to Order
    Diagnostics
    • Diagnostics
    • Companion Diagnostics
    Support
    • Getting started
    • Contact Support
    • Troubleshooting Guide
    • FAQs
    • Manuals, SDS & Inserts
    • Downloads
    • Webinars
    • Training Videos

    Visit Bio-Techne and its other brands

    • bio-technie
    • protein
    • bio-spacific
    • rd
    • novus
    • tocris
    © 2025 Advanced Cell Diagnostics, Inc.
    • Terms and Conditions of Sale
    • Privacy Policy
    • Security
    • Email Preferences
    • 
    • 
    • 

    For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

     

    Contact Us / Request a Quote
    Download Manuals
    Request a PAS Project Consultation
    Order online at
    bio-techne.com
    OK
    X
    Contact Us

    Complete one of the three forms below and we will get back to you.

    For Quote Requests, please provide more details in the Contact Sales form below

    • Contact Sales
    • Contact Support
    • Contact Services
    • Offices

    Advanced Cell Diagnostics

    Our new headquarters office starting May 2016:

    7707 Gateway Blvd.  
    Newark, CA 94560
    Toll Free: 1 (877) 576-3636
    Phone: (510) 576-8800
    Fax: (510) 576-8798

     

    Bio-Techne

    19 Barton Lane  
    Abingdon Science Park
    Abingdon
    OX14 3NB
    United Kingdom
    Phone 2: +44 1235 529449
    Fax: +44 1235 533420

     

    Advanced Cell Diagnostics China

    20F, Tower 3,
    Raffles City Changning Office,
    1193 Changning Road, Shanghai 200051

    021-52293200
    info.cn@bio-techne.com
    Web: www.acdbio.com/cn

    For general information: Info.ACD@bio-techne.com
    For place an order: order.ACD@bio-techne.com
    For product support: support.ACD@bio-techne.com
    For career opportunities: hr.ACD@bio-techne.com

    See Distributors
    ×

    You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

    OK Cancel
    Need help?

    How can we help you?