Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (134)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • (-) Remove DRD2 filter DRD2 (53)
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (31) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (28) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (14) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (6) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (3) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (76) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Neuroscience (49) Apply Neuroscience filter
  • Behavior (4) Apply Behavior filter
  • Addiction (3) Apply Addiction filter
  • behavioral (2) Apply behavioral filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Psychiatry (2) Apply Psychiatry filter
  • Sex Differences (2) Apply Sex Differences filter
  • anorexia nervosa (1) Apply anorexia nervosa filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Bone (1) Apply Bone filter
  • Cocaine Reward (1) Apply Cocaine Reward filter
  • CRISPR/dCas9 (1) Apply CRISPR/dCas9 filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Decision Making (1) Apply Decision Making filter
  • Developmental (1) Apply Developmental filter
  • Devlopment (1) Apply Devlopment filter
  • Drug Rewards (1) Apply Drug Rewards filter
  • Endocrinology (1) Apply Endocrinology filter
  • Evolution (1) Apply Evolution filter
  • Grooming behavior dysfunction (1) Apply Grooming behavior dysfunction filter
  • Metabolic (1) Apply Metabolic filter
  • Nueroscience (1) Apply Nueroscience filter
  • OCD (1) Apply OCD filter
  • Opioid Addiction (1) Apply Opioid Addiction filter
  • Other (1) Apply Other filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Methods (1) Apply Other: Methods filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Protocols (1) Apply Protocols filter
  • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
  • Reward Processing (1) Apply Reward Processing filter
  • Reward seeking (1) Apply Reward seeking filter
  • Stem cell (1) Apply Stem cell filter
  • Stress (1) Apply Stress filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (134) Apply Publications filter
Targeting thalamic circuits rescues motor and mood deficits in PD mice

Nature

2022 Jun 08

Zhang, Y;Roy, DS;Zhu, Y;Chen, Y;Aida, T;Hou, Y;Shen, C;Lea, NE;Schroeder, ME;Skaggs, KM;Sullivan, HA;Fischer, KB;Callaway, EM;Wickersham, IR;Dai, J;Li, XM;Lu, Z;Feng, G;
PMID: 35676479 | DOI: 10.1038/s41586-022-04806-x

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.
In vitro-derived medium spiny neurons recapitulate human striatal development and complexity at single-cell resolution

Cell reports methods

2022 Dec 19

Conforti, P;Bocchi, VD;Campus, I;Scaramuzza, L;Galimberti, M;Lischetti, T;Talpo, F;Pedrazzoli, M;Murgia, A;Ferrari, I;Cordiglieri, C;Fasciani, A;Arenas, E;Felsenfeld, D;Biella, G;Besusso, D;Cattaneo, E;
PMID: 36590694 | DOI: 10.1016/j.crmeth.2022.100367

Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).
Diagnosis of HPV-driven head and neck cancer with a single test in routine clinical practice.

Mod Pathol.

2015 Sep 25

Mirghani H, Casiraghi O, Amen F, He M, Ma XJ, Saulnier P, Lacroix L, Drusch F, Ben Lakdhar A, Saint Guily JL, Badoual C, Scoazec JY, Vielh P.
PMID: 26403782 | DOI: 10.1038/modpathol.2015.113

Abstract

Accurate screening of HPV-driven head and neck squamous cell carcinoma is a critical issue. Although there are commercial direct and indirect assays for HPV-related head and neck squamous cell carcinoma, none are ideal. Recently, a novel RNA in situ hybridization test (the RNAscope HPV-test) has been developed for the detection of high-risk HPV E6/E7 mRNA in formalin-fixed paraffin-embedded tissue. However, validation of this assay against the 'gold standard' (identification of high-risk HPV E6/E7 mRNA in fresh-frozen tissue by quantitative real-time (qRT)-PCR) has only been reported by one team. Formalin-fixed paraffin-embedded samples from 50 patients with tonsil or tongue base carcinoma were tested using the RNAscope HPV-test, p16 immunohistochemistry, and chromogenic in situ hybridization for high-risk HPV-DNA. The results were compared with those of qRT-PCR on matched fresh-frozen samples. Compared with the reference test, the sensitivity, specificity, positive, and negative predictive values of the RNAscope HPV-test and of p16 immunohistochemistry were 93%, 94%, 96%, 88% and 96%, 93%, 96%, and 93%, respectively. Five cases were discrepant between the RNAscope HPV-test and p16-immunohistochemisrty. The RNAscope HPV-test demonstrated excellent analytical performance against the 'gold standard' and is easier to interpret than chromogenic in situ hybridization. p16-immunohistochemistry also performed very well, however its main weakness is that it is an indirect marker of the presence of HPV. These data suggest that the RNAscope HPV-test is a promising test that could be developed as a clinical standard for the precise identification of HPV-driven oropharyngeal squamous cell carcinoma.

HPV RNA CISH score identifies two prognostic groups in a p16 positive oropharyngeal squamous cell carcinoma population

Modern Pathology

2018 Jun 20

Augustin J, Mandavit M, Outh-Gauer S, Grard O, Gasne C, Lépine C, Mirghani H, Hans S, Bonfils P, Denize T, Bruneval P, Bishop JA, Fontugne J, Péré H, Tartour E, Badoual C.
PMID: - | DOI: 10.1038/s41379-018-0090-y

HPV-related and HPV-unrelated oropharyngeal squamous cell carcinomas are two distinct entities according to the Union for International Cancer Control, with a better prognosis conferred to HPV-related oropharyngeal squamous cell carcinomas. However, variable clinical outcomes are observed among patients with p16 positive oropharyngeal squamous cell carcinoma, which is a surrogate marker of HPV infection. We aimed to investigate the prognostic value of RNA CISH against E6 and E7 transcripts (HPV RNA CISH) to predict such variability. We retrospectively included 50 histologically confirmed p16 positive oropharyngeal squamous cell carcinomas (p16 positive immunostaining was defined by a strong staining in 70% or more of tumor cells). HPV RNA CISH staining was assessed semi-quantitatively to define two scores: RNA CISH “low” and RNA CISH “high”. Negative HPV RNA CISH cases were scored as RNA CISH “low”. This series contained 29 RNA CISH low cases (58%) and 21 RNA CISH high cases (42%). Clinical and pathologic baseline characteristics were similar between the two groups. RNA CISH high staining was associated with a better overall survival in both univariate and multivariate analyses (p = 0.033 and p = 0.042, respectively). Other recorded parameters had no prognostic value. In conclusion, HPV RNA CISH might be an independent prognostic marker in p16 positive oropharyngeal squamous cell carcinomas and might help guide therapeutics.

Diagnosis of HPV driven oropharyngeal cancers: Comparing p16 based algorithms with the RNAscope HPV-test

Oral Oncology

2016 Oct 15

Mirghani H, Casiraghi O, Guerlain J, Amen F, He MX, Ma XJ, Luo Y, Mourareau C, Drusch F, Lakdhar AB, Melkane A, St Guily L, Badoual C, Scoazec JY, Borget I, Aupérin A, Dalstein V, Vielh P.
PMID: - | DOI: http://dx.doi.org/10.1016/j.oraloncology.2016.10.009

Abstract

Background

Accurate identification of HPV-driven oropharyngeal cancer (OPC) is a major issue and none of the current diagnostic approaches is ideal. An in situ hybridization (ISH) assay that detects high-risk HPV E6/E7 mRNA, called the RNAscope HPV-test, has been recently developed. Studies have suggested that this assay may become a standard to define HPV-status.

Methods

To further assess this test, we compared its performance against the strategies that are used in routine clinical practice: p16 immunohistochemistry (IHC) as a single test and algorithms combining p16-IHC with HPV-DNA identification by PCR (algorithm-1) or ISH (algorithm-2).

Results

105 OPC specimens were analyzed. The prevalence of HPV-positive samples varied considerably: 67% for p16-IHC, 54% for algorithm-1, 61% for algorithm-2 and 59% for the RNAscope HPV-test. Discrepancies between the RNAscope HPV-test and p16-IHC, algorithm-1 and 2 were noted in respectively 13.3%, 13.1%, and 8.6%.

The 4 diagnostic strategies were able to identify 2 groups with different prognosis according to HPV-status, as expected. However, the greater survival differential was observed with the RNAscope HPV-test [HR: 0.19, 95% confidence interval (CI), 0.07–0.51, p = 0.001] closely followed by algorithm-1 (HR: 0.23, 95% CI, 0.08–0.66, p = 0.006) and algorithm-2 (HR: 0.26, 95% CI, 0.1–0.65, p = 0.004). In contrast, a weaker association was found when p16-IHC was used as a single test (HR: 0.33, 95% CI, 0.13–0.81, p = 0.02).

Conclusions

Our findings suggest that the RNAscope HPV-test and p16-based algorithms perform better that p16 alone to identify OPC that are truly driven by HPV-infection. The RNAscope HPV-test has the advantage of being a single test.

Spindle Cell Carcinomas of the Head and Neck Rarely Harbor Transcriptionally-Active Human Papillomavirus.

Head and neck pathology, ;7(3):250–257.

Watson RF, Chernock RD, Wang X, Liu W, Ma XJ, Luo Y, Wang H, El-Mofty SK, Lewis JS Jr (2013).
PMID: 23536041 | DOI: 10.1007/s12105-013-0438-z.

Spindle cell carcinoma is an uncommon variant of squamous cell carcinoma characterized by spindled or pleomorphic cells which appear to be a true sarcoma but are actually epithelial. Some head and neck squamous cell carcinoma variants can be human papillomavirus (HPV)-related and have improved outcomes. We sought to determine if spindle cell carcinomas are associated with transcriptionally-active HPV. Cases of spindle cell carcinoma were retrieved from department files. Transcriptionally-active HPV was determined by mRNA in situ hybridization for high risk HPV E6 and E7 transcripts and by a surrogate marker, p16 immunohistochemistry, with a 50% staining cutoff. RT-PCR for high risk HPV mRNA was performed on the cases that were technical failures by in situ hybridization. Medical records and follow up information were retrieved for all patients. Of 31 cases, 5 were from the oropharynx, 12 from the oral cavity, and 14 from the larynx or hypopharynx. One purely spindled oral cavity spindle cell carcinoma was HPV positive. It was also diffusely positive for p16. Another laryngeal spindle cell carcinoma was HPV positive in both the squamous and spindle cell components, but was negative for p16. None of the five oropharyngeal spindle cell carcinomas were positive for p16 or HPV RNA. The HPV positive patients both presented at high stage (IV) and died with disease within 2 years of diagnosis. The majority of spindle cell carcinomas of the head and neck, including those arising in the oropharynx, are not related to transcriptionally active HPV. Although the number of cases is too small for any definitive conclusions, for the rare HPV positive spindle cell carcinoma cases, positive viral status does not appear to confer any prognostic benefit.
Quantified Co-Expression Analysis of Central Amygdala Sub-Populations

eNeuro

2018 Jan 24

McCullough KM, Morrison FG, Hartmann J, Carlezon WA, Ressler KJ.
PMID: - | DOI: 10.1523/ENEURO.0010-18.2018

Molecular identification and characterization of fear controlling circuitries is a promising path towards developing targeted treatments of fear-related disorders. Three-color in situ hybridization analysis was used to determine whether somatostatin (Sst), neurotensin (Nts), corticotropin releasing factor (Crf), tachykinin 2 (Tac2), protein kinase c delta (Prkcd), and dopamine receptor 2 (Drd2) mRNA co-localize in male mouse amygdala neurons. Expression and co-localization was examined across capsular (CeC), lateral (CeL), and medial (CeM) compartments of the central amygdala. The greatest expression of Prkcd and Drd2 were found in CeC and CeL. Crf was expressed primarily in CeL while Sst, Nts, and Tac2 expressing neurons were distributed between CeL and CeM. High levels of co-localization were identified between Sst, Nts, Crf, and Tac2 within the CeL while little co-localization was detected between any mRNAs within the CeM. These findings provide a more detailed understanding of the molecular mechanisms that regulate the development and maintenance of fear and anxiety behaviors.

Significance Statement Functional and behavioral analysis of central amygdala microcircuits has yielded significant insights into the role of this nucleus in fear and anxiety related behaviors. However, precise molecular and locational description of examined populations is lacking. This publication provides a quantified regionally precise description of the expression and co-expression of six frequently examined central amygdala population markers. Most revealing, within the most commonly examined region, the posterior CeL, four of these markers are extensively co-expressed suggesting the potential for experimental redundancy. This data clarifies circuit interaction and function and will increase relevance and precision of future cell-type specific reports.

Potential clinical implications of HPV status and expressions of p53 and cyclin D1 among oropharyngeal cancer patients.

J Oral Pathol Med.

2018 Sep 06

David Lu XJ, Liu KYP, Soares RC, Thomson T, Prisman E, Wu J, Poh CF.
PMID: 30191616 | DOI: 10.1111/jop.12779

Abstract

BACKGROUND:

There is increasing evidence that high-risk human papillomavirus plays significant role in oropharyngeal cancer; however, there is lack of knowledge on the interplay between the virus and its downstream related molecules and their possible prognostic values. The objectives of the study are to better understand the interplay of the HR-HPV and its associated downstream molecules and to evaluate potential biomarkers for patient outcomes.

METHODS:

We conducted a retrospective study with available formalin-fixed, paraffin-embedded tissue from 244 oropharyngeal cancer patients that received curative radiotherapy or concurrent chemoradiotherapy from 2000 to 2008. In addition to chart review, we performed HPV DNA and RNA in situ hybridization and immunohistochemistry for p53, the retinoblastoma protein, p16, and cyclin D1 analysis. Cox-proportional hazard and Kaplan-Meier survival analysis were used to determine the prognostic markers for clinical outcomes.

RESULTS:

Patients averaged 57.3±9.4 year-old and were mostly males (76.2%) and ever-smokers (76.2%). All patients received curative radiotherapy and 44.3% received concurrent chemoradiotherapy. We detected the human papillomavirus in 77.9% of study patients. Ever-smokers, more advanced tumor stage, and receiving radiotherapy only had poorer 5-year overall survival, disease-specific survival, and loco-regional recurrence. Cases with positive human papillomavirus and p53 overexpression had poorer disease-specific survival. Cases without human papillomavirus, but cyclin D1 overexpression, was associated with poorer 5-year overall survival.

CONCLUSIONS:

Our data suggests that additional p53 and cyclin D1 testing may benefit oropharyngeal cancer patients with known human papillomavirus status.

In situ hybridization detection methods for HPV16 E6/E7 mRNA in identifying transcriptionally active HPV infection of oropharyngeal carcinoma: an updating

Human Pathology

2017 Oct 06

Volpi CC, Ciniselli CM, Gualeni AV, Plebani M, Alfieri S, Verderio P, Locati L, Perrone F, Quattronea P, Carbone A, Pilotti S, Gloghini A.
PMID: 28993274 | DOI: 10.1016/j.humpath.2017.09.011

The aim of this study is comparing two in situ hybridization (ISH) detection methods for human papilloma virus (HPV) 16 E6/E7 mRNA, i.e. the RNAscope™ 2.0 High Definition (HD) and the upgraded RNAscope™ 2.5 HD version. The RNAscope™ 2.5 HD has recently replaced the RNAscope™ 2.0 HD detection kit. Therefore, this investigation starts from the need to analytically validate the new mRNA ISH assay and, possibly, to refine the current algorithm for HPV detection in oropharyngeal squamous cell carcinoma (OSCC) with the final goal to apply it to daily laboratory practice. The study was based on HPV status and on generated data, interpreted by a scoring algorithm. The results highlighted that the compared RNAscope HPV tests had a good level of interchangeability and enabled to identify OSCC that are truly driven by high risk-HPV infection. This was also supported by the comparison of the RNAscope HPV test with HPV E6/E7 mRNA real time reverse transcriptase-polymerase chain reaction (RT-PCR), in a fraction of cases where material for HPV E6/E7 mRNA real time RT-PCR was available. Furthermore, the algorithm that associates p16 immunohistochemistry (IHC) with the identification of HPV mRNA by RNAscope was more effective than the one that associated p16 IHC with the identification of HPV DNA by ISH.

Defining the better algorithm for the accurate identification of HPV status among oropharyngeal squamous-cell carcinoma. Results from a pilot study

WCRJ 2015; 2 (1): e497

Gloghini A, Volpi CC, Gualeni AV, Cortellazzi B, Perrone F, Pilotti S.
PMID: //www.wcrj.net/wp-content/uploads/2015/04/WCRJ-2015-2-1-e497-Gloghini-WCRJ.pdf

Abstract: Background: The recognition of tumor infection by human papilloma virus (HPV) in oropharyngeal squamous-cell carcinoma (OSCC) is emerging as a valid biomarker to more accurate selection of patients for specific treatment, surveillance and tumor staging. To this aim, the HPV detection strategy in OSCC must dissect between HPV that is acting as a driver of malignant transformation, and transcriptionally silent virus involved in productive infection. The aim of this study is to define the better method for the accurate identification of HPV status among OSCC. Patients and Methods: Thirty-six patients were selected for HPV status assessment combining different methods, such as immunohistochemistry (IHC) for p16, in-situ hybridization (ISH) for high risk (HR)-HPV DNA and HR-HPV E6/E7 mRNA along with real-time PCR of HPV16 E6/E7 mRNA. All these cases were originally classified as HPV negative by DNA-based ISH but p16 positive by the IHC. Results: Twenty-six cases showed concordance between methods; whereas, nine cases resulted negative for HPV E6/E7 mRNA RT-PCR but positive for HPV E6/E7 mRNA ISH. Conclusion: By considering that the bright field HPV E6/E7 mRNA ISH could be more sensitive than mRNA-based real-time RT-PCR, and that it provides the precise identification of transcriptionally active HPV infected cells, a randomized analysis to validate the robustness of this preliminary assay will be undertaken.
Pathway- and Cell-Specific Kappa-Opioid Receptor Modulation of Excitation-Inhibition Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

Neuron.

2017 Jan 04

Tejeda HA, Wu J, Kornspun AR, Pignatelli M, Kashtelyan V, Krashes MJ, Lowell BB, Carlezon WA Jr, Bonci A.
PMID: 28056342 | DOI: 10.1016/j.neuron.2016.12.005

Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases the excitatory drive of D1 MSN activity by the amygdala, but not the hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway-specific manner.

VEGF receptor-2/neuropilin1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival.

J Pathol.

2018 Jul 20

Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, Sund M, Öhlund D, Kiflemariam S, Sjöblom T, Claesson-Welsh L.
PMID: 30027561 | DOI: 10.1002/path.5141

Unstable and dysfunctional tumor vasculature promotes cancer progression and spread. Signal transduction by the pro-angiogenic vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2) is modulated by VEGFA-dependent complex formation with Neuropilin-1 (NRP1). NRP1 expressed on tumor cells can form VEGFR2/NRP1 trans-complexes between tumor cells and endothelial cells which arrests VEGFR2 on the endothelial surface, thus interfering with productive VEGFR2 signaling. In mouse fibrosarcoma, VEGFR2/NRP1 trans-complexes correlated with reduced tumor vessel branching and reduced tumor cell proliferation. Pancreatic ductal adenocarcinoma (PDAC) strongly expressed NRP1 on both tumor cells and endothelial cells in contrast to other common cancer forms. Using proximity ligation assay, VEGFR2/NRP1 trans-complexes were identified in human PDAC tumor tissue, and its presence was associated with reduced tumor vessel branching, reduced tumor cell proliferation and improved patient survival after adjusting for other known survival predictors. We conclude that VEGFR2/NRP1 trans-complex formation is an independent predictor of PDAC patient survival. This article is protected by copyright. All rights reserved.

Pages

  • « first
  • ‹ previous
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?