Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (134)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • (-) Remove DRD2 filter DRD2 (53)
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (31) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (28) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (14) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (6) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (3) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (76) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Neuroscience (49) Apply Neuroscience filter
  • Behavior (4) Apply Behavior filter
  • Addiction (3) Apply Addiction filter
  • behavioral (2) Apply behavioral filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Psychiatry (2) Apply Psychiatry filter
  • Sex Differences (2) Apply Sex Differences filter
  • anorexia nervosa (1) Apply anorexia nervosa filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Bone (1) Apply Bone filter
  • Cocaine Reward (1) Apply Cocaine Reward filter
  • CRISPR/dCas9 (1) Apply CRISPR/dCas9 filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Decision Making (1) Apply Decision Making filter
  • Developmental (1) Apply Developmental filter
  • Devlopment (1) Apply Devlopment filter
  • Drug Rewards (1) Apply Drug Rewards filter
  • Endocrinology (1) Apply Endocrinology filter
  • Evolution (1) Apply Evolution filter
  • Grooming behavior dysfunction (1) Apply Grooming behavior dysfunction filter
  • Metabolic (1) Apply Metabolic filter
  • Nueroscience (1) Apply Nueroscience filter
  • OCD (1) Apply OCD filter
  • Opioid Addiction (1) Apply Opioid Addiction filter
  • Other (1) Apply Other filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Methods (1) Apply Other: Methods filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Protocols (1) Apply Protocols filter
  • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
  • Reward Processing (1) Apply Reward Processing filter
  • Reward seeking (1) Apply Reward seeking filter
  • Stem cell (1) Apply Stem cell filter
  • Stress (1) Apply Stress filter
  • Transcriptomics (1) Apply Transcriptomics filter

Category

  • Publications (134) Apply Publications filter
Concurrent human papillomavirus-positive squamous cell carcinoma of the oropharynx in a married couple

Case Reports in Otolaryngology

2016 May 25

Brobst T, García J, Rowe Price KA, Gao G, Smith DI, Price D.
PMID: - | DOI: -

Abstract
Background:

Although alcohol and tobacco use are known risk factors for development of squamous cell carcinoma in the head and neck, human papillomavirus (HPV) has been increasingly associated with this group of cancers. We describe the case of a married couple who presented with HPV-positive oropharynx squamous cell carcinoma within two months of each other.

Methods:

Tumor biopsies were positive for p16 and high-risk HPV in both patients. Sanger sequencing showed a nearly identical HPV16 strain in both patients. Both patients received chemoradiation, and one  patient also underwent transoral robotic tongue base resection with bilateral neck dissection.

Results:

Both patients showed no evidence of recurrent disease on follow-up PET imaging.

Conclusions:

New head and neck symptoms should be promptly evaluated in the partner of a patient with known HPV-positive oropharynx cancer. This case expands the limited current literature on concurrent presentation of HPV-positive oropharynx squamous cell carcinoma in couples. 

Altered dopaminergic regulation of the dorsal striatum is able to induce tic-like movements in juvenile rats.

PLoS One

2018 Apr 26

Nespoli E, Rizzo F, Boeckers T, Schulze U, Hengerer B.
PMID: 29698507 | DOI: 10.1371/journal.pone.0196515

Motor tics are sudden, repetitive, involuntary movements representing the hallmark behaviors of the neurodevelopmental disease Tourette's syndrome (TS). The primary cause of TS remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to the development of a dopaminergic theory of TS etiology which is supported by post mortem and in vivo studies indicating that non-physiological activation of the striatum could generate tics. The striatum controls movement execution through the balanced activity of dopamine receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway, respectively. Different neurotransmitters can activate or repress striatal activity and among them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alteration in juvenile rats, in order to modify the delicate balance between direct and indirect pathway. This manipulation was done in the dorsal striatum, that had been associated with tic-like movements generation in animal models. The results were movements resembling tics, which were categorized and scored according to a newly developed rating scale and were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced dopaminergic regulation of medium spiny neuron activity as being causally related to the observed phenotype.

Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain.

Brain Struct Funct. 2019 Jan 2.

2019 Jan 02

Yu Q, Liu YZ, Zhu YB, Wang YY, Li Q, Yin DM.
PMID: 30604007 | DOI: 10.1007/s00429-018-01824-2

The D2 dopamine receptor (Drd2) is implicated in several brain disorders such as schizophrenia, Parkinson's disease, and drug addiction. Drd2 is also the primary target of both antipsychotics and Parkinson's disease medications. Although the expression pattern of Drd2 is relatively well known in mouse brain, the temporal and spatial distribution of Drd2 is lesser clear in rat brain due to the lack of Drd2 reporter rat lines. Here, we used CRISPR/Cas9 techniques to generate two knockin rat lines: Drd2::Cre and Rosa26::loxp-stop-loxp-tdTomato. By crossing these two lines, we produced Drd2 reporter rats expressing the fluorescence protein tdTomato under the control of the endogenous Drd2 promoter. Using fluorescence imaging and unbiased stereology, we revealed the cellular expression pattern of Drd2 in adult and postnatal rat forebrain. Strikingly, the Drd2 expression pattern differs between Drd2 reporter rats and Drd2 reporter mice generated by BAC transgene in prefrontal cortex and hippocampus. These results provide fundamental information needed for the study of Drd2 function in rat forebrain. The Drd2::Cre rats generated here may represent a useful tool to study the function of neuronal populations expressing Drd2.
Functional and molecular heterogeneity of D2R neurons along dorsal ventral axis in the striatum.

Nat Commun

2020 Apr 23

Puighermanal E, Castell L, Esteve-Codina A, Melser S Kaganovsky K, Zussy , Boubaker-Vitre J, Gut M, Rialle S, Kellendonk C, Sanz E, Quintana A, Marsicano G, Martin M, Rubinstein M, Girault JA, Ding JB Valjent E
PMID: 32327644 | DOI: 10.1038/s41467-020-15716-9

Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presently unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we identified hundreds of novel region-specific molecular markers, which may serve as tools to target selective subpopulations. As a proof of concept, we characterized the molecular identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen heterogeneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional features in the control of specific motor behaviors.
Ciliated HPV-related Carcinoma: A Well-differentiated Form of Head and Neck Carcinoma That Can Be Mistaken for a Benign Cyst.

Am J Surg Pathol.

2015 Oct 17

Bishop JA, Westra WH.
PMID: 26457358 | DOI: 10.1097/PAS.0000000000000521.

Although human papillomavirus (HPV)-related oropharyngeal carcinomas (HPV-OPCs) are generally regarded as "poorly differentiated," they actually maintain a close resemblance to the lymphoepithelium of the tonsillar crypts from which they arise: they are basaloid, exhibit minimal keratinization, and are often permeated by lymphocytes. In rare cases, the presence of cilia in a primary HPV-OPC and their persistence in lymph node metastasis can confound the distinction between a benign and malignant process. Three cases of ciliated HPV-OPCs were identified from the archives of The Johns Hopkins Head and Neck Pathology consultation service. HPV status was determined using p16 immunohistochemistry and high-risk HPV in situ hybridization. All 3 patients presented with a cystic lymph node metastasis without a known primary carcinoma. One metastasis was originally diagnosed as a branchial cleft cyst only to regionally recur 7 years later. In 2 cases, a primary HPV-OPC was found in the tonsil. The carcinomas exhibited both nonkeratinizing squamous epithelium and cystic/microcystic spaces lined by ciliated columnar cells. Both the squamous and ciliated cells were HPV positive. This report draws attention to a novel variant of HPV-related head and neck cancer that exhibits ciliated columnar cells. This variant challenges prevailing notions that: (1) HPV-OPCs are uniformly poorly differentiated cancers; (2) cilia are an infallible feature of benignancy; and (3) presence of cilia is a reliable criterion for establishing branchial cleft origin when dealing with cystic lesions of the lateral neck.

Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression

Cell.

2017 Jul 13

Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK.
PMID: 28689640 | DOI: 10.1016/j.cell.2017.06.015

Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.

Immunotherapy in Penile Squamous Cell Carcinoma: Present or Future? Multi-Target Analysis of Programmed Cell Death Ligand 1 Expression and Microsatellite Instability

Frontiers in medicine

2022 May 03

Montella, M;Sabetta, R;Ronchi, A;De Sio, M;Arcaniolo, D;De Vita, F;Tirino, G;Caputo, A;D'Antonio, A;Fiorentino, F;Facchini, G;Lauro, GD;Perdonà, S;Ventriglia, J;Aquino, G;Feroce, F;Borges Dos Reis, R;Neder, L;Brunelli, M;Franco, R;Zito Marino, F;
PMID: 35592855 | DOI: 10.3389/fmed.2022.874213

Penile cancer (PC) is an extremely rare malignancy, and the patients at advanced stages have currently limited treatment options with disappointing results. Immune checkpoint inhibitors anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) are currently changing the treatment of several tumors. Furthermore, the microsatellite instability (MSI) and the deficient mismatch repair system (dMMR) proteins represent predictive biomarkers for response to immune checkpoint therapy. Until present, few data have been reported related to PD-L1 expression and MSI in PC. The main aim of our study was the evaluation of PD-L1 expression in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) in immune cells and the analysis of dMMR/MSI status in a large series of PCs.A series of 72 PC, including 65 usual squamous cell carcinoma (USCC), 1 verrucous, 4 basaloid, 1 warty, and 1 mixed (warty-basaloid), was collected. Immunohistochemistry (IHC) was performed to assess PD-L1 expression using two different anti-PD-L1 antibodies (clone SP263 and SP142 Ventana) and MMR proteins expression using anti-MLH1, anti-PMS2, anti-MSH2, and anti-MSH6 antibodies. PCR analysis was performed for the detection of MSI status.Of the 72 PC cases analyzed by IHC, 45 (62.5%) cases were TC positive and 57 (79%) cases were combined positive score (CPS) using PDL1 SP263. In our cohort, TILs were present in 62 out of 72 cases (86.1%), 47 (75.8%) out of 62 cases showed positivity to PDL1 clone SP142. In our series, 59 cases (82%) had pMMR, 12 cases (16.7%) had lo-paMMR, and only 1 case (1.3%) had MMR. PCR results showed that only one case lo-paMMR was MSI-H, and the case dMMR by IHC not confirmed MSI status.Our findings showed that PD-L1 expression and MSI status represent frequent biological events in this tumor suggesting a rationale for a new frontier in the treatment of patients with PC based on the immune checkpoint inhibitors.
Human papillomavirus (HPV) infection in a case-control study of oral squamous cell carcinoma and its increasing trend in northeastern Thailand

Journal of Medical Virology

2016 Dec 09

Phusingha P, Ekalaksananan T, Vatanasapt P, Loyha K, Promthet S, Kongyingyoes B, Patarapadungkit N, Chuerduangphui J, Pientong C.
PMID: 27935063 | DOI: 10.1002/jmv.24744

Human papillomavirus (HPV) is an independent risk factor for development of oral squamous cell carcinoma (OSCC). This study aimed to investigate the role of HPV infection and the trend in percentage of HPV-associated OSCC over a five-year period in northeastern Thailand. In this case-control study, 91 exfoliated oral cell samples and 80 lesion cell samples from OSCC cases and exfoliated oral cells from 100 age/gender-matched controls were collected. HPV infection was investigated by PCR using GP5+/GP6+ primers followed by HPV genotyping using reverse line blot hybridization. Quantitative RT-PCR was used to evaluate HPV oncogene transcription. Temporal trends of HPVinfection were evaluated in archived formalin-fixed paraffin-embedded (FFPE) OSCC tissues using in situ hybridization. HPV DNA was found in 17.5% (14/80) of lesion samples from OSCC cases and 29.7% (27/91) of exfoliated oral cell samples from the same cases. These values were significantly higher than in exfoliated oral cell samples from controls (13%, 13/100). HPV-16 was the genotype most frequently found in OSCC cases (92.8%, 13/14 infected cases). Interestingly, HPV oncogene mRNA expression was detected and correlated with OSCC cases (P < 0.005). Of 146 archived FFPE OSCC samples, 82 (56.2%) were positive for high-risk HPV DNA and 64 (43.8%) cases were positive for HPV E6/E7 mRNA expression. There was a trend of increasing percentage of HPV-associated OSCC from 2005 to 2010. This was especially so for females with well-differentiated tumors in specific tongue sub-sites. We suggest that HPV infection plays an important role in oral carcinogenesis in northeastern Thailand.

Reducing local synthesis of estrogen in the tubular striatum promotes attraction to same-sex odors in female mice

Hormones and behavior

2022 Jan 28

Wright, KN;Johnson, NL;Dossat, AM;Wilson, JT;Wesson, DW;
PMID: 35101702 | DOI: 10.1016/j.yhbeh.2022.105122

Brain-derived 17β-estradiol (E2) confers rapid effects on neural activity. The tubular striatum (TuS, also called the olfactory tubercle) is both capable of local E2 synthesis due to its abundant expression of aromatase and is a critical locus for odor-guided motivated behavior and odor hedonics. TuS neurons also contain mRNA for estrogen receptors α, β, and the G protein-coupled estrogen receptor. We demonstrate here that mRNA for estrogen receptors appears to be expressed upon TuS dopamine 1 receptor-expressing neurons, suggesting that E2 may play a neuromodulatory role in circuits which are important for motivated behavior. Therefore, we reasoned that E2 in the TuS may influence attraction to urinary odors which are highly attractive. Using whole-body plethysmography, we examined odor-evoked high-frequency sniffing as a measure of odor attaction. Bilateral infusion of the aromatase inhibitor letrozole into the TuS of gonadectomized female adult mice induced a resistance to habituation over successive trials in their investigatory sniffing for female mouse urinary odors, indicative of an enhanced attraction. All males displayed resistance to habituation for female urinary odors, indicative of enhanced attraction that is independent from E2 manipulation. Letrozole's effects were not due to group differences in basal respiration, nor changes in the ability to detect or discriminate between odors (both monomolecular odorants and urinary odors). Therefore, de novo E2 synthesis in the TuS impacts females' but not males' attraction to female urinary odors, suggesting a sex-specific influence of E2 in odor hedonics.
Identification of transcriptionally active HPV infection in formalin-fixed, paraffin-embedded biopsies of oropharyngeal carcinoma

Human Pathology

Morbini P , Alberizzi P, Tinelli C, Paglino C, Bertino G, Comoli P, Pedrazzoli P, Benazzo M.
PMID: 10.1016/j.humpath.2014.12.014

Human papillomavirus (HPV) oncogenic activity is the result of viral oncogene E6 and E7 expression in infected cells. Oncogene expression analysis is however not part of the routine diagnostic evaluation of HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) since it requires fresh tumor tissue. We compared the diagnostic accuracy of several methods commonly employed for HPV characterization in OPSCC with the results of the newly available HPV E6/E7 mRNA in situ hybridization (ISH) on formalin-fixed, paraffin-embedded biopsy samples, in order to establish if the latter should be introduced in the diagnostic routine to increase accuracy when fresh tissue is not available. p16 immunostain, DNA ISH for high risk (HR) HPV genotypes, SPF LiPA amplification and genotyping, and HPV16 E6 amplification were performed on 41 consecutive OPSCC samples. Twenty (48,7%) cases were positive by mRNA ISH; sensitivity and specificity were 100% and 90% for p16, 90% and 100% for DNA ISH, 70% and 76% for SPF10 LiPA, 90% and 76% for E6 amplification. A diagnostic algorithm considering p16 immunostain as first step followed by either HR HPV DNA ISH or HPV16 E6 amplification in p16-positive cases correctly characterized 90% of mRNA-positive and all mRNA-negative cases; combining the 3 tests correctly identified all cases. While no stand-alone test was sufficiently accurate for classifying HPV-associated OPSCC, the high sensitivity and specificity of the established combination of p16 immunostain, DNA ISH and HPV16 DNA amplification suggests that the introduction of labour- and cost-intensive mRNA ISH, is not necessary in the diagnostic routine of oropharyngeal tumors.
HPV E6/E7 RNA In Situ Hybridization Signal Patterns as Biomarkers of Three-Tier Cervical Intraepithelial Neoplasia Grade

PLoS One. 2014 Mar 13;9(3):e91142

Evans MF, Peng Z, Clark KM, Adamson CSC, Ma XJ, Wu X, Wang H, Luo Y, Cooper K
PMID: 24625757 | DOI: 10.1371/journal.pone.0091142.eCollection2014.

Cervical lesion grading is critical for effective patient management. A three-tier classification (cervical intraepithelial neoplasia [CIN] grade 1, 2 or 3) based on H&E slide review is widely used. However, for reasons of considerable inter-observer variation in CIN grade assignment and for want of a biomarker validating a three-fold stratification, CAP-ASCCP LAST consensus guidelines recommend a two-tier system: low- or high-grade squamous intraepithelial lesions (LSIL or HSIL). In this study, high-risk HPV E6/E7 and p16 mRNA expression patterns in eighty-six CIN lesions were investigated by RNAscope chromogenic in situ hybridization (CISH). Specimens were also screened by immunohistochemistry for p16INK4a (clone E6H4), and by tyramide-based CISH for HPV DNA. HPV genotyping was performed by GP5+/6+ PCR combined with cycle-sequencing. Abundant high-risk HPV RNA CISH signals were detected in 26/32 (81.3%) CIN 1, 22/22 (100%) CIN 2 and in 32/32 (100%) CIN 3 lesions. CIN 1 staining patterns were typified (67.7% specimens) by abundant diffusely staining nuclei in the upper epithelial layers; CIN 2 lesions mostly (66.7%) showed a combination of superficial diffuse-stained nuclei and multiple dot-like nuclear and cytoplasmic signals throughout the epithelium; CIN 3 lesions were characterized (87.5%) by multiple dot-like nuclear and cytoplasmic signals throughout the epithelial thickness and absence/scarcity of diffusely staining nuclei (trend across CIN grades: P<0.0001). These data are consistent with productive phase HPV infections exemplifying CIN 1, transformative phase infections CIN 3, whereas CIN 2 shows both productive and transformative phase elements. Three-tier data correlation was not found for the other assays examined. The dual discernment of diffuse and/or dot-like signals together with the assay’s high sensitivity for HPV support the use of HPV E6/E7 RNA CISH as an adjunct test for deciding lesion grade when CIN 2 grading may be beneficial (e.g. among young women) or when ‘LSIL vs. HSIL’ assignment is equivocal.
p16 Immunohistochemistry in Oropharyngeal Squamous Cell Carcinoma Using the E6H4 Antibody Clone: A Technical Method Study for Optimal Dilution.

Head Neck Pathol.

2017 Nov 30

Lewis JS Jr, Shelton J, Kuhs KL, K Smith D.
PMID: 29190003 | DOI: 10.1007/s12105-017-0871-5

Routine testing for p16 immunohistochemistry (with selective HPV-specific test use) has been recommended for clinical practice in oropharyngeal squamous cell carcinoma (OPSCC). Data suggests that the E6H4 clone performs best for this purpose, yet no studies have evaluated the optimal antibody concentration for OPSCC testing. We evaluated three concentrations (undiluted, 1:5, and 1:10) of the primary antibody solution for E6H4 using tissue microarrays from a cohort of 199 OPSCC patients with a > 70% staining cutoff for positivity. Concordance was evaluated using percent agreement and Cohen's kappa. The concentrations were evaluated for sensitivity and specificity using high risk HPV RNA in situ hybridization (RNA-ISH) and also correlated with Kaplan-Meier overall survival analysis. Inter-rater agreement was very high between p16 results at each concentration and also with RNA in situ hybridization (p < 0.0001 for all). Agreement between p16 undiluted and 1:5 dilution (agreement 98.2%; Kappa 0.943; p < 0.0001) was very high and between p16 undiluted and 1:10 dilution (agreement 79.2%; Kappa 0.512; p < 0.0001) much lower. Intensity of the staining did decrease with the 1:5 and 1:10 dilutions compared to undiluted, but not in a manner that obviously would change test interpretation or performance. Results suggest that the E6H4 antibody performs well at dilutions of up to 1:5 fold with a minor decrease in staining intensity, minimum loss of sensitivity, and no loss of specificity in OPSCC patients. This could result in reagent and cost savings.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?