ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
2023 Jun 01
Schaaf, CR;Polkoff, KM;Carter, A;Stewart, AS;Sheahan, B;Freund, J;Ginzel, J;Snyder, JC;Roper, J;Piedrahita, JA;Gonzalez, LM;
PMID: 37159340 | DOI: 10.1096/fj.202300223R
Gastroenterology
2023 Mar 01
He, S;Lei, P;Kang, W;Cheung, P;Xu, T;Mana, M;Park, C;Wang, H;Imada, S;Russell, J;Wang, J;Wang, R;Zhou, Z;Chetal, K;Stas, E;Mohad, V;Bruun-Rasmussen, P;Sadreyev, R;Hodin, R;Zhang, Y;Breault, D;Camargo, F;Yilmaz, Ö;Fredberg, J;Saeidi, N;
| DOI: 10.1053/j.gastro.2023.02.030
Scientific Reports
2017 Jul 26
Kim HS, Lee C, Kim WH, Maeng YH, Jang BG.
PMID: 28747693 | DOI: 10.1038/s41598-017-06900-x
Nat Commun.
2019 Feb 13
Gay DM, Ridgway RA, Müeller M, Hodder MC, Hedley A, Clark W, Leach JD, Jackstadt R, Nixon C, Huels DJ, Campbell AD, Bird TG, Sansom OJ.
PMID: 30760720 | DOI: 10.1038/s41467-019-08586-3
Different thresholds of Wnt signalling are thought to drive stem cell maintenance, regeneration, differentiation and cancer. However, the principle that oncogenic Wnt signalling could be specifically targeted remains controversial. Here we examine the requirement of BCL9/9l, constituents of the Wnt-enhanceosome, for intestinal transformation following loss of the tumour suppressor APC. Although required for Lgr5+ intestinal stem cells and regeneration, Bcl9/9l deletion has no impact upon normal intestinal homeostasis. Loss of BCL9/9l suppressed many features of acute APC loss and subsequent Wnt pathway deregulation in vivo. This resulted in a level of Wnt pathway activation that favoured tumour initiation in the proximal small intestine (SI) and blocked tumour growth in the colon. Furthermore, Bcl9/9l deletion completely abrogated β-catenin driven intestinal and hepatocellular transformation. We speculate these results support the just-right hypothesis of Wnt-driven tumour formation. Importantly, loss of BCL9/9l is particularly effective at blocking colonic tumourigenesis and mutations that most resemble those that occur in human cancer.
Nature
2022 Jul 01
Azkanaz, M;Corominas-Murtra, B;Ellenbroek, SIJ;Bruens, L;Webb, AT;Laskaris, D;Oost, KC;Lafirenze, SJA;Annusver, K;Messal, HA;Iqbal, S;Flanagan, DJ;Huels, DJ;Rojas-Rodríguez, F;Vizoso, M;Kasper, M;Sansom, OJ;Snippert, HJ;Liberali, P;Simons, BD;Katajisto, P;Hannezo, E;van Rheenen, J;
PMID: 35831497 | DOI: 10.1038/s41586-022-04962-0
Dev Biol.
2018 May 31
Da Silva F, Massa F, Motamedi FJ, Vidal V, Rocha AS, Gregoire EP, Cai CL, Wagner KD, Schedl A.
PMID: 29859889 | DOI: 10.1016/j.ydbio.2018.05.024
Coronary artery anomalies are common congenital disorders with serious consequences in adult life. Coronary circulation begins when the coronary stems form connections between the aorta and the developing vascular plexus. We recently identified the WNT signaling modulator R-spondin 3 (Rspo3), as a crucial regulator of coronary stem proliferation. Using expression analysis and tissue-specific deletion we now demonstrate that Rspo3 is primarily produced by cardiomyocytes. Moreover, we have employed CRISPR/Cas9 technology to generate novel Lgr4-null alleles that showed a significant decrease in coronary stem proliferation and thus phenocopied the coronary artery defects seen in Rspo3 mutants. Interestingly, Lgr4 mutants displayed slightly hypomorphic right ventricles, an observation also made after myocardial specific deletion of Rspo3. These results shed new light on the role of Rspo3 in heart development and demonstrate that LGR4 is the principal R-spondin 3 receptor in the heart.
Nature.
2018 Oct 08
Sánchez-Danés A, Larsimont JC, Liagre M, Muñoz-Couselo E, Lapouge G, Brisebarre A, Dubois C, Suppa M, Sukumaran V, Del Marmol V, Tabernero J, Blanpain C.
PMID: 30297799 | DOI: 10.1038/s41586-018-0603-3
Basal cell carcinoma (BCC) is the most frequent cancer in humans and results from constitutive activation of the Hedgehog pathway1. Several Smoothened inhibitors are used to treat Hedgehog-mediated malignancies, including BCC and medulloblastoma2. Vismodegib, a Smoothened inhibitor, leads to BCC shrinkage in the majority of patients with BCC3, but the mechanism by which it mediates BCC regression is unknown. Here we used two genetically engineered mouse models of BCC4 to investigate the mechanisms by which inhibition of Smoothened mediates tumour regression. We found that vismodegib mediates BCC regression by inhibiting a hair follicle-like fate and promoting the differentiation of tumour cells. However, a small population of tumour cells persists and is responsible for tumour relapse following treatment discontinuation, mimicking the situation found in humans5. In both mouse and human BCC, this persisting, slow-cycling tumour population expresses LGR5 and is characterized by active Wnt signalling. Combining Lgr5 lineage ablation or inhibition of Wnt signalling with vismodegib treatment leads to eradication of BCC. Our results show that vismodegib induces tumour regression by promoting tumour differentiation, and demonstrates that the synergy between Wnt and Smoothened inhibitors is a clinically relevant strategy for overcoming tumour relapse in BCC.
Front Physiol.
2018 Aug 28
Zhang S, Choi HS, Jung HS, Lee JM.
PMID: 30233392 | DOI: 10.3389/fphys.2018.01192
Taste buds develop in different regions of the mammal oral cavity. Adult stem cells in various organs including the tongue papillae are marked by leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homolog, Lgr6. Recent studies have reported that adult taste stem/progenitor cells in circumvallate papilla (CVP) on the posterior tongue are Lgr5-positive. In this study, we confirm the Lgr5 expression pattern during CVP development. A previous study reported that mesenchymal Fgf10 is necessary for maintaining epithelial Lgr5-positive stem/progenitor cells. To confirm the interaction between Lgr5-positive CVP epithelium and mesenchymal factor FGF10, reverse recombination (180-degree) was performed after tongue epithelium detachment. FGF10 protein-soaked bead implantation was performed after reverse recombination to rescue CVP development. Moreover, we reduced mesenchymal Fgf10 by BIO and SU5402 treatment which disrupted CVP morphogenesis. This study suggests that the crosstalk between epithelial Lgr5 and mesenchymal Fgf10 plays a pivotal role in CVP epithelium invagination during mouse tongue CVP development by maintaining Lgr5-positive stem/progenitor cells.
Nature cardiovascular research
2022 May 01
Bernier-Latmani, J;Cisarovsky, C;Mahfoud, S;Ragusa, S;Dupanloup, I;Barras, D;Renevey, F;Nassiri, S;Anderle, P;Squadrito, ML;Siegert, S;Davanture, S;González-Loyola, A;Fournier, N;Luther, SA;Benedito, R;Valet, P;Zhou, B;De Palma, M;Delorenzi, M;Sempoux, C;Petrova, TV;
PMID: 35602406 | DOI: 10.1038/s44161-022-00061-5
Cell death & disease
2022 Feb 21
Walter, RJ;Sonnentag, SJ;Munoz-Sagredo, L;Merkel, M;Richert, L;Bunert, F;Heneka, YM;Loustau, T;Hodder, M;Ridgway, RA;Sansom, OJ;Mely, Y;Rothbauer, U;Schmitt, M;Orian-Rousseau, V;
PMID: 35190527 | DOI: 10.1038/s41419-022-04607-0
Am J Physiol Gastrointest Liver Physiol.
2018 Jan 18
Kinoshita H, Hayakawa Y, Niu Z, Konishi M, Hata M, Tsuboi M, Hayata Y, Hikiba Y, Ihara S, Nakagawa H, Hirata Y, Wang TC, Koike K.
PMID: 29345968 | DOI: 10.1152/ajpgi.00351.2017
During human gastric carcinogenesis, intestinal metaplasia (IM) is frequently seen in the atrophic stomach. In mice, a distinct type of metaplasia known as spasmolytic polypeptide-expressing metaplasia (SPEM) is found in several inflammatory and genetically engineered models. Given the diversity of long- and short-term models of mouse SPEM, it remains unclear whether all models have a shared or distinct molecular mechanism. The origin of SPEM in mice is currently under debate. It is postulated that stem or progenitor cells acquire genetic alterations that then supply metaplastic cell clones, while the possibility of transdifferentiation or dedifferentiation from mature gastric chief cells has also been suggested. In this study, we report that loss of chief cells was sufficient to induce short-term regenerative SPEM-like lesions that originated from chief cell precursors in the gastric neck region. Furthermore, Lgr5+ mature chief cells failed to contribute to both short- and long-term metaplasia, whereas isthmus stem and progenitor cells efficiently contributed to long-term metaplasia. Interestingly, multiple administrations of high-dose pulsed tamoxifen induced expansion of Lgr5 expression and Lgr5-CreERT recombination within the isthmus progenitors apart from basal chief cells. Thus, we conclude that short-term SPEM represents a regenerative process arising from neck progenitors following chief cell loss, whereas true long-term SPEM originates from isthmus progenitors. Mature gastric chief cells may be dispensable for SPEM development.
International journal of tryptophan research : IJTR
2023 Feb 09
Abu Hejleh, AP;Huck, K;Jähne, K;Tan, CL;Lanz, TV;Epping, L;Sonner, JK;Meuth, SG;Henneberg, A;Opitz, CA;Herold-Mende, C;Sahm, F;Platten, M;Sahm, K;
PMID: 36798537 | DOI: 10.1177/11786469231153111
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com