Ah Kioon MD, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, Gordon JK, Barrat FJ.
PMID: 29321259 | DOI: 10.1126/scitranslmed.aam8458
Systemic sclerosis (SSc) is a multisystem life-threatening fibrosing disorder that lacks effective treatment. The link between the inflammation observed in organs such as the skin and profibrotic mechanisms is not well understood. The plasmacytoid dendritic cell (pDC) is a key celltype mediating Toll-like receptor (TLR)-induced inflammation in autoimmune disease patients, including lupus and skin diseases with interface dermatitis. However, the role of pDCs in fibrosis is less clear. We show that pDCs infiltrate the skin of SSc patients and are chronically activated, leading to secretion of interferon-α (IFN-α) and CXCL4, which are both hallmarks of the disease. We demonstrate that the secretion of CXCL4 is under the control of phosphatidylinositol 3-kinase δ and is due to the aberrant presence of TLR8 on pDCs of SSc patients, which is not seen in healthy donors or in lupus pDCs, and that CXCL4 primarily acts by potentiating TLR8- but also TLR9-induced IFN production by pDCs. Depleting pDCs prevented disease in a mouse model of scleroderma and could revert fibrosis in mice with established disease. In contrast, the disease was exacerbated in mice transgenic for TLR8 with recruitment of pDCs to the fibrotic skin, whereas TLR7 only partially contributed to the inflammatory response, indicating that TLR8 is the key RNA-sensing TLR involved in the establishment of fibrosis. We conclude that the pDC is an essential cell type involved in the pathogenesis of SSc and its removal using depleting antibodies or attenuating pDC function could be a novel approach to treat SSc patients.
J Clin Oncol. 2018 Sep 28:JCO2018789602.
Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, Luke JJ, Balmanoukian AS, Schmidt EV, Zhao Y, Gong X, Maleski J, Leopold L, Gajewski TF.
PMID: 30265610 | DOI: 10.1200/JCO.2018.78.9602
Abstract PURPOSE: Tumors may evade immunosurveillance through upregulation of the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. Epacadostat is a potent and highly selective IDO1 enzyme inhibitor. The open-label phase I/II ECHO-202/KEYNOTE-037 trial evaluated epacadostat plus pembrolizumab, a programmed death protein 1 inhibitor, in patients with advanced solid tumors. Phase I results on maximum tolerated dose, safety, tolerability, preliminary antitumor activity, and pharmacokinetics are reported. PATIENTS AND METHODS: Patients received escalating doses of oral epacadostat (25, 50, 100, or 300 mg) twice per day plus intravenous pembrolizumab 2 mg/kg or 200 mg every 3 weeks. During the safety expansion, patients received epacadostat (50, 100, or 300 mg) twice per day plus pembrolizumab 200 mg every 3 weeks. RESULTS: Sixty-two patients were enrolled and received one or more doses of study treatment. The maximum tolerated dose of epacadostat in combination with pembrolizumab was not reached. Fifty-two patients (84%) experienced treatment-related adverse events (TRAEs), with fatigue (36%), rash (36%), arthralgia (24%), pruritus (23%), and nausea (21%) occurring in ≥ 20%. Grade 3/4 TRAEs were reported in 24% of patients. Seven patients (11%) discontinued study treatment because of TRAEs. No TRAEs led to death. Epacadostat 100 mg twice per day plus pembrolizumab 200 mg every 3 weeks was recommended for phase II evaluation. Objective responses (per Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1) occurred in 12 (55%) of 22 patients with melanoma and in patients with non-small-cell lung cancer, renal cell carcinoma, endometrial adenocarcinoma, urothelial carcinoma, and squamous cell carcinoma of the head and neck. The pharmacokinetics of epacadostat and pembrolizumab and antidrug antibody rate were comparable to historical controls for monotherapies. CONCLUSION: Epacadostat in combination with pembrolizumab generally was well tolerated and had encouraging antitumor activity in multiple advanced solid tumors.
British journal of cancer
Girithar, HN;Staats Pires, A;Ahn, SB;Guillemin, GJ;Gluch, L;Heng, B;
PMID: 37041200 | DOI: 10.1038/s41416-023-02245-7
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
International journal of tryptophan research : IJTR
Abu Hejleh, AP;Huck, K;Jähne, K;Tan, CL;Lanz, TV;Epping, L;Sonner, JK;Meuth, SG;Henneberg, A;Opitz, CA;Herold-Mende, C;Sahm, F;Platten, M;Sahm, K;
PMID: 36798537 | DOI: 10.1177/11786469231153111
The vascular niche of malignant gliomas is a key compartment that shapes the immunosuppressive brain tumor microenvironment (TME). The blood-brain-barrier (BBB) consisting of specialized endothelial cells (ECs) and perivascular cells forms a tight anatomical and functional barrier critically controlling transmigration and effector function of immune cells. During neuroinflammation and tumor progression, the metabolism of the essential amino acid tryptophan (Trp) to metabolites such as kynurenine has long been identified as an important metabolic pathway suppressing immune responses. Previous studies have demonstrated that indoleamine-2,3-dioxygenase-1 (IDO1), a key rate-limiting enzyme in tryptophan catabolism, is expressed within the TME of high-grade gliomas. Here, we investigate the role of endothelial IDO1 (eIDO1) expression for brain tumor immunity. Single-cell RNA sequencing data revealed that in human glioma tissue, IDO1 is predominantly expressed by activated ECs showing a JAK/STAT signaling pathway-related CXCL11+ gene expression signature. In a syngeneic experimental glioma model, eIDO1 is induced by low-dose tumor irradiation. However, cell type-specific ablation of eIDO1 in experimental gliomas did not alter frequency and phenotype of tumor-infiltrating T cells nor tumor growth. Taken together these data argue against a dominant role of eIDO1 for brain tumor immunity.
Lovatt, D;Tamburino, A;Krasowska-Zoladek, A;Sanoja, R;Li, L;Peterson, V;Wang, X;Uslaner, J;
PMID: 36261573 | DOI: 10.1038/s42003-022-03970-0
Patients with peripheral nerve injury, viral infection or metabolic disorder often suffer neuropathic pain due to inadequate pharmacological options for relief. Developing novel therapies has been challenged by incomplete mechanistic understanding of the cellular microenvironment in sensory nerve that trigger the emergence and persistence of pain. In this study, we report a high resolution transcriptomics map of the cellular heterogeneity of naïve and injured rat sensory nerve covering more than 110,000 individual cells. Annotation reveals distinguishing molecular features of multiple major cell types totaling 45 different subtypes in naïve nerve and an additional 23 subtypes emerging after injury. Ligand-receptor analysis revealed a myriad of potential targets for pharmacological intervention. This work forms a comprehensive resource and unprecedented window into the cellular milieu underlying neuropathic pain and demonstrates that nerve injury is a dynamic process orchestrated by multiple cell types in both the endoneurial and epineurial nerve compartments.
Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality
Dang, MT;Gonzalez, MV;Gaonkar, KS;Rathi, KS;Young, P;Arif, S;Zhai, L;Alam, Z;Devalaraja, S;To, TKJ;Folkert, IW;Raman, P;Rokita, JL;Martinez, D;Taroni, JN;Shapiro, JA;Greene, CS;Savonen, C;Mafra, F;Hakonarson, H;Curran, T;Haldar, M;
PMID: 33789113 | DOI: 10.1016/j.celrep.2021.108917
Tumor-associated macrophages (TAMs) play an important role in tumor immunity and comprise of subsets that have distinct phenotype, function, and ontology. Transcriptomic analyses of human medulloblastoma, the most common malignant pediatric brain cancer, showed that medulloblastomas (MBs) with activated sonic hedgehog signaling (SHH-MB) have significantly more TAMs than other MB subtypes. Therefore, we examined MB-associated TAMs by single-cell RNA sequencing of autochthonous murine SHH-MB at steady state and under two distinct treatment modalities: molecular-targeted inhibitor and radiation. Our analyses reveal significant TAM heterogeneity, identify markers of ontologically distinct TAM subsets, and show the impact of brain microenvironment on the differentiation of tumor-infiltrating monocytes. TAM composition undergoes dramatic changes with treatment and differs significantly between molecular-targeted and radiation therapy. We identify an immunosuppressive monocyte-derived TAM subset that emerges with radiation therapy and demonstrate its role in regulating T cell and neutrophil infiltration in MB.
Cortez, V;Livingston, B;Sharp, B;Hargest, V;Papizan, JB;Pedicino, N;Lanning, S;Jordan, SV;Gulman, J;Vogel, P;DuBois, RM;Crawford, JC;Boyd, DF;Pruett-Miller, SM;Thomas, PG;Schultz-Cherry, S;
PMID: 37290501 | DOI: 10.1016/j.mucimm.2023.05.011
Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.
Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells
Newman, AC;Falcone, M;Huerta Uribe, A;Zhang, T;Athineos, D;Pietzke, M;Vazquez, A;Blyth, K;Maddocks, ODK;
PMID: 33831358 | DOI: 10.1016/j.molcel.2021.03.019
Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.