Journal of the American Society of Nephrology : JASN
Zhao, Z;Dai, X;Jiang, G;Lin, F;
PMID: 36758123 | DOI: 10.1681/ASN.0000000000000099
Ureteric bud induction and branching morphogenesis is fundamental to the establishment of the renal architecture and is a key determinant of nephron number. Defective ureteric bud morphogenesis could give rise to a spectrum of malformations associated with congenital anomalies of the kidney and urinary tract (CAKUT). Signaling involving glial cell line-derived neurotrophic factor and its receptor RET and coreceptor GFRA1 appears to be particularly important in ureteric bud development. Recent epigenome profiling studies have uncovered dynamic changes of histone H3 lysine K4 (H3K4) methylation during metanephros development, and dysregulated H3K4 methylation has been associated with a syndromic human CAKUT.To investigate whether and how inactivation of Ash2l, which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide H3K4 methylation, might contribute to CAKUT, we inactivated Ash2l specifically from the ureteric bud lineage in C57BL/6 mice and examined the effects on genome-wide H3K4 methylation and metanephros development. Genes and epigenome changes potentially involved in these effects were screened using RNA-seq combined with CUT&Tag-seq.Ureteric bud-specific inactivation of Ash2l caused CAKUT-like phenotypes mainly involving renal dysplasia at birth, which were associated with deficient H3K4 trimethylation. Ash2l inactivation slowed proliferation of cells at the ureteric bud tip, delaying budding and impairing ureteric bud branching morphogenesis. These effects were associated with downregulation of Ret, Gfra1, and Wnt11, which participate in RET/GFRA1 signaling.These experiments identify ASH2L-dependent H3K4 methylation in the ureteric bud lineage as an upstream epigenetic regulator of RET/GFRA1 signaling in ureteric bud morphogenesis, which, if deficient, may lead to CAKUT.
Minoli, L;Licenziato, L;Kocikowski, M;Cino, M;Dziubek, K;Iussich, S;Fanelli, A;Morello, E;Martano, M;Hupp, T;Vojtesek, B;Parys, M;Aresu, L;
PMID: 36551672 | DOI: 10.3390/cancers14246188
Canine apocrine gland anal sac adenocarcinoma (AGASACA) is an aggressive canine tumor originating from the anal sac glands. Surgical resection, with or without adjuvant chemotherapy, represents the standard of care for this tumor, but the outcome is generally poor, particularly for tumors diagnosed at an advanced stage. For this reason, novel treatment options are warranted, and a few recent reports have suggested the activation of the immune checkpoint axis in canine AGASACA. In our study, we developed canine-specific monoclonal antibodies targeting PD-1 and PD-L1. A total of 41 AGASACAs with complete clinical and follow-up information were then analyzed by immunohistochemistry for the expression of the two checkpoint molecules (PD-L1 and PD-1) and the presence of tumor-infiltrating lymphocytes (CD3 and CD20), which were evaluated within the tumor bulk (intratumor) and in the surrounding stroma (peritumor). Seventeen AGASACAs (42%) expressed PD-L1 in a range between 5% and 95%. The intratumor lymphocytes were predominantly CD3+ T-cells and were positively correlated with the number of PD-1+ intratumor lymphocytes (ρ = 0.36; p = 0.02). The peritumor lymphocytes were a mixture of CD3+ and CD20+ cells with variable PD-1 expression (range 0-50%). PD-L1 expression negatively affected survival only in the subgroup of dogs treated with surgery alone (n = 14; 576 vs. 235 days). The presence of a heterogeneous lymphocytic infiltrate and the expression of PD-1 and PD-L1 molecules support the relevance of the immune microenvironment in canine AGASACAs and the potential value of immune checkpoints as promising therapeutic targets.
Wasala, LP;Watkins, T;Wasala, N;Burke, M;Yue, Y;Lai, Y;Yao, G;Duan, D;
PMID: 36310439 | DOI: 10.1089/hum.2022.180
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by dystrophin deficiency. Dystrophin consists of the amino terminus, central rod domain with 24 spectrin-like repeats and four hinges (H), cysteine-rich domain, and carboxyl terminus. Several highly abbreviated micro-dystrophins are currently in clinical trials. They all carry H1 and H4. Here we investigated whether these two hinges are essential for micro-dystrophin function in murine DMD models. Three otherwise identical micro-dystrophins were engineered to contain H1 and/or H4 and were named H1/H4 (with both H1 and H4), ∆H1 (without H1), and ∆H4 (without H4). These constructs were packaged in adeno-associated virus serotype-9 and delivered to the tibialis anterior muscle of 3-month-old male mdx4cv mice (1E12 vector genome particles/muscle). Three months later, we detected equivalent micro-dystrophin expression in total muscle lysate. However, only H1/H4 and ∆H1 showed correct sarcolemmal localization. ∆H4 mainly existed as subsarcolemmal aggregates. H1/H4 and ∆H1, but not ∆H4, fully restored the dystrophin-associated protein complex and significantly improved the specific muscle force. Eccentric contraction-induced force decline was best protected by H1/H4, followed by ∆H1, but not by ∆H4. Next, we compared H1/H4 and ∆H1 in 6-week-old male mdx mice by intravenous injection (1E13 vector genome particles/mouse). Four months post-injection, H1/H4 significantly outperformed ∆H1 in extensor digitorum longus muscle force measurements but two constructs yielded comparable ECG improvements. We conclude that H4 is essential for micro-dystrophin function and H1 facilitates force production. Our findings will help develop next-generation micro-dystrophin gene therapy.
Shaligram, S;Lopez, JL;Lin, PY;Ho, P;Huang, A;
| DOI: 10.1016/j.jvssci.2022.05.021
Background: Regulatory T cells (Tregs) suppress inflammation in atherosclerosis, and therefore have the therapeutic potential to decrease the risk of myocardial infarction and stroke. However, there is currently no method to generate antigen specific Tregs that target atherosclerosis. We therefore engineered Tregs that express a chimeric antigen receptor (CAR) targeting malonaldehyde-modified low-density lipoprotein cholesterol (MDA-LDL), the most common form of oxidized LDL and a key molecular component of atherosclerosis. Methods: Novel single chain variable fragments (scFv) were synthesized using sequences from antibodies targeting human MDA-LDL. OxidizedLDL specific CARs (ox-CARs) were subsequently engineered by fusing each scFv to an IgG4 hinge, CD28 transmembrane, and CD28/CD3z cytoplasmic domains. CD4+ CD25+ CD127low/e Tregs were purified from human blood via fluorescent activated cell sorting and lentivirally transduced to express the novel ox-CARs (ox-CAR-Tregs). Human atherosclerotic plaques were obtained from patients undergoing carotid endarterectomy. Autologous ox-CAR-Tregs were analyzed for activation after ex vivo coculture with carotid endarterectomy samples. Results: A rationally designed panel of 42 ox-CARs were engineered using scFv derived from 12 antibodies targeting MDA-LDL. We first assessed CAR expression and activation in Jurkat T cells to identify promising oxCAR variants for further evaluation in human Tregs. After culture in the presence of MDA-LDL, six ox-CAR-Treg variants consistently showed significant activation, compared with controls, based on CD71 expression, cytokine expression, and proliferation in the absence of CD3/28 stimulation. Human atherosclerotic samples were identified to have substantial amounts of MDA-LDL epitopes using immunohistochemistry. Autologous ox-CAR-Tregs showed a dose-dependent increase in CD71 expression after ex vivo co-culture with atherosclerotic plaque. Conclusions: An optimized CAR targeting MDA-LDL activates Tregs Q10 when cultured with human atherosclerotic plaque ex vivo.
American journal of human genetics
Mahyari, E;Guo, J;Lima, AC;Lewinsohn, DP;Stendahl, AM;Vigh-Conrad, KA;Nie, X;Nagirnaja, L;Rockweiler, NB;Carrell, DT;Hotaling, JM;Aston, KI;Conrad, DF;
PMID: 34626582 | DOI: 10.1016/j.ajhg.2021.09.001
Klinefelter syndrome (KS), also known as 47, XXY, is characterized by a distinct set of physiological abnormalities, commonly including infertility. The molecular basis for Klinefelter-related infertility is still unclear, largely because of the cellular complexity of the testis and the intricate endocrine and paracrine signaling that regulates spermatogenesis. Here, we demonstrate an analysis framework for dissecting human testis pathology that uses comparative analysis of single-cell RNA-sequencing data from the biopsies of 12 human donors. By comparing donors from a range of ages and forms of infertility, we generate gene expression signatures that characterize normal testicular function and distinguish clinically distinct forms of male infertility. Unexpectedly, we identified a subpopulation of Sertoli cells within multiple individuals with KS that lack transcription from the XIST locus, and the consequence of this is increased X-linked gene expression compared to all other KS cell populations. By systematic assessment of known cell signaling pathways, we identify 72 pathways potentially active in testis, dozens of which appear upregulated in KS. Altogether our data support a model of pathogenic changes in interstitial cells cascading from loss of X inactivation in pubertal Sertoli cells and nominate dosage-sensitive factors secreted by Sertoli cells that may contribute to the process. Our findings demonstrate the value of comparative patient analysis in mapping genetic mechanisms of disease and identify an epigenetic phenomenon in KS Sertoli cells that may prove important for understanding causes of infertility and sex chromosome evolution.
Rapid postmortem ventilation improves donor lung viability by extending the tolerable warm ischemic time after cardiac death in mice
American journal of physiology. Lung cellular and molecular physiology
Yu, J;Xu, C;Lee, JS;Alder, JK;Wen, Z;Wang, G;Gil Silva, AA;Sanchez, PG;Pilewsky, JM;McDyer, JF;Wang, X;
PMID: 34318693 | DOI: 10.1152/ajplung.00011.2021
Uncontrolled donation after cardiac death (uDCD) contributes little to ameliorating donor lung shortage due to rapidly progressive warm ischemia after circulatory arrest. Here, we demonstrated non-hypoxia improves donor lung viability in a novel uDCD lung transplant model undergoing rapid ventilation after cardiac death and compared the evolution of ischemia-reperfusion injury in mice that underwent pulmonary artery ligation (PAL). The tolerable warm ischemia time at 37ºC was initially determined in mice using a modified PAL model. The donor lung following PAL was also transplanted into syngeneic mice and compared to those that underwent rapid ventilation or no ventilation at 37ºC prior to transplantation. Twenty-four hours following reperfusion, lung histology, PaO2/FIO2 ratio, and inflammatory mediators were measured. Four hours of PAL had little impact on PaO2/FIO2 ratio and acute lung injury score in contrast to significant injury induced by 5 hours of PAL. Four-hour PAL lungs showed an early myeloid-dominant inflammatory signature when compared to naïve lungs and substantially injured five-hour PAL lungs. In the context of transplantation, unventilated donor lungs showed severe injury after reperfusion, whereas ventilated donor lungs showed minimal changes in PaO2/FIO2 ratio, histologic score, and expression of inflammatory markers. Taken together, the tolerable warm ischemia time of murine lungs at 37oC can be extended by maintaining alveolar ventilation for up to 4 hours. Non-hypoxic lung warm ischemia-reperfusion injury shows an early transcriptional signature of myeloid cell recruitment and extracellular matrix proteolysis prior to blood-gas barrier dysfunction and significant tissue damage.
Biologic and behavioral associations of estrogen receptor alpha positivity in head and neck squamous cell carcinoma
Drake, V;Bigelow, E;Fakhry, C;Windon, M;Rooper, LM;Ha, P;Miles, B;Gourin, C;Mandal, R;Mydlarz, W;London, N;Vosler, PS;Yavvari, S;Troy, T;Waterboer, T;Eisele, DW;D'Souza, G;
PMID: 34304004 | DOI: 10.1016/j.oraloncology.2021.105461
Tumor HPV status is an established independent prognostic marker for oropharynx cancer (OPC). Recent studies have reported that tumor estrogen receptor alpha (ERα) positivity is also associated with prognosis independent of HPV. Little is known about the biologic and behavioral predictors of ERα positivity in head and neck squamous cell cancer (HNSCC). We therefore explored this in a multicenter prospective cohort study.Participants with HNSCC completed a survey and provided a blood sample. Tumor samples were tested for ERα using immunohistochemistry. ERα positivity was defined as ≥1%, standardized by the American Society of Clinical Oncology/College of American Pathologists in breast cancer. Characteristics were compared with χ2 and Fisher's exact test. Odds ratios (OR) were calculated using logistic regression.Of 318 patients with HNSCC, one third had ERα positive tumors (36.2%, n = 115). Odds of ERα expression were significantly increased in those with HPV-positive tumors (OR = 27.5, 95% confidence interval[CI] 12.1-62), smaller tumors (≤T2, OR = 3.6, 95% CI 1.9-7.1), male sex (OR = 2.0, 95% CI 1.1-3.6), overweight/obesity (BMI ≥ 25, OR = 1.9, 95% CI 1.1-3.3), and those married/living with a partner (OR = 1.7, 95% CI 1.0-3.0). In a multivariate model, HPV-positivity (aOR = 27.5, 95% CI 11.4-66) and small tumor size (≤T2, aOR = 2.2, 95% CI 1.0-4.8) remained independently associated with ERα status. When restricted to OPC (n = 180), tumor HPV status (aOR = 17.1, 95% CI 2.1-137) and small tumor size (≤T2, aOR = 4.0 95% CI 1.4-11.3) remained independently associated with ERα expression.Tumor HPV status and small tumor size are independently associated with ERα expression in HNSCC.
Spike Generators and Cell Signaling in the Human Auditory Nerve: An Ultrastructural, Super-Resolution, and Gene Hybridization Study
Frontiers in Cellular Neuroscience
Liu, W;Luque, M;Li, H;Schrott-Fischer, A;Glueckert, R;Tylstedt, S;Rajan, G;Ladak, H;Agrawal, S;Rask-Andersen, H;
| DOI: 10.3389/fncel.2021.642211
Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, “esoteric,” and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices.Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance.Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed.Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.
Oncolytic adenoviral H101 synergizes with radiation in cervical cancer cells
Current cancer drug targets
Duan, Y;Bai, H;Li, X;Wang, D;Wang, Y;Cao, M;Zhang, N;Chen, H;Wang, Y;
PMID: 33687882 | DOI: 10.2174/1568009621666210308103541
A major challenge in cervical cancer radiotherapy is to tailor the radiation doses efficiently to both eliminate malignant cells and to reduce the side effects to normal tissue. Oncolytic adenoviral drug H101 is recently tested and approved for topical adjuvant treatment of several malignancies. This study is to evaluate the potential neoadjuvant radiotherapy benefits of H101 by testing the inhibitory function of H101 combined with radiation in different cervical cancer cells. Human cervical cancer cells C33a, SiHa, CaSki, and Hela were treated with varying concentrations of H101 alone or combined with radiation (2Gy or 4Gy). Cell viability and apoptosis were measured at indicated time intervals. HPV16 E6 and cellular p53 mRNA expression alteration were measured by qRT-PCR. RNA scope in-situ detect HPV E6 status. P53 protein alteration are detected by Western blot. Cell viability and apoptosis show the combination of a high dose of H101 (MOI=1000, 10000) with radiation yielded a synergistic anti-cancer effect in all tested cervical cancer cell lines (P<0.05), with the greatest effect achieved in HPV negative C33a cells (P<0.05). Low HPV16 viral load SiHa cell was more sensitive to combination therapy than high HPV16 viral load CaSki cell (P<0.05). The combined treatment could reduce HPV16 E6 expression and increase cellular P53 level compared to radiation alone in SiHa and CaSki (P<0.05). Oncolytic adenoviral H101 effectively enhances the antitumor efficacy of radiation in cervical cancer cells and may serve as a novel combination therapy for cervical cancer.
MALAT1 maintains the intestinal mucosal homeostasis in Crohn\'s disease via the miR-146b-5p-CLDN11/NUMB pathway
Journal of Crohn's & colitis
Li, Y;Zhu, L;Chen, P;Wang, Y;Yang, G;Zhou, G;Li, L;Feng, R;Qiu, Y;Han, J;Chen, B;He, Y;Zeng, Z;Chen, M;Zhang, S;
PMID: 33677577 | DOI: 10.1093/ecco-jcc/jjab040
Intestinal homeostasis disorder is critical for developing Crohn's disease (CD). Maintaining mucosal barrier integrity is essential for intestinal homeostasis, preventing intestinal injury and complications. Among the remarkably altered long non-coding RNAs (lncRNAs) in CD, we aimed to investigate whether metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) modulated CD and consequent disruption of intestinal homeostasis. Microarray analyses on intestinal mucosa of CD patients and controls were performed to identify dysregulated lncRNAs. MALAT1 expression was investigated via qRT-PCR and its distribution in intestinal tissues was detected using BaseScope. Intestines from MALAT1 knockout mice with colitis were investigated using histological, molecular and biochemical approaches. Effects of intestinal epithelial cells transfected with MALAT1 lentiviruses and Smart Silencer, on monolayer permeability and apical junction complex (AJC) proteins were analysed. MiR-146b-5p were confirmed as a critical MALAT1 mediator in cells transfected with miR-146b-5p mimic/inhibitor and in colitis mice administered with agomir-146b-5p/antagomir-146b-5p. Interaction between MALAT1 and miR-146b-5p was predicted via bioinformatics and validated using Dual-luciferase reporter assay and Ago2-RIP. MALAT1 was aberrantly downregulated in the intestine mucosa of CD patients and mice with experimental colitis. MALAT1 knockout mice were hypersensitive to DSS-induced experimental colitis. MALAT1 regulated intestinal mucosal barrier and regained intestinal homeostasis by sequestering miR-146b-5p and maintaining the expression of the AJC proteins NUMB and CLDN11. Downregulation of MALAT1 contributed to the pathogenesis of CD by disrupting AJC. Thus, a specific MALAT1-miR-146b-5p-NUMB/CLDN11 pathway that plays a vital role in maintaining intestinal mucosal homeostasis may serve as a novel target for CD treatment.
Zinc Dependent Regulation of ZEB1 and YAP1 Co-activation Promotes EMT Plasticity and Metastasis in Pancreatic Cancer
Liu, M;Zhang, Y;Yang, J;Zhan, H;Zhou, Z;Jiang, Y;Shi, X;Fan, X;Zhang, J;Luo, W;Fung, KA;Xu, C;Bronze, MS;Houchen, CW;Li, M;
PMID: 33421513 | DOI: 10.1053/j.gastro.2020.12.077
Pancreatic cancer is characterized by extensive metastasis. EMT plasticity plays a critical role in tumor progression and metastasis by maintaining the transition between EMT and MET states. Our aim is to understand the molecular events regulating metastasis and EMT plasticity in pancreatic cancer. The interactions between a cancer promoting zinc transporter ZIP4, a zinc dependent EMT transcriptional factor ZEB1, a co-activator YAP1, and integrin α3 (ITGA3) were examined in human pancreatic cancer cells, clinical specimens, spontaneous mouse models (KPC and KPCZ) and orthotopic xenografts, and 3D spheroid and organoid models. Correlations between ZIP4, miR-373, and its downstream targets were assessed by RNA in situ hybridization and IHC staining. The transcriptional regulation of ZEB1, YAP1, ITGA3 by ZIP4 was determined by ChIP, Co-IP and luciferase reporter assays. The Hippo pathway effector YAP1 is a potent transcriptional co-activator and forms a complex with ZEB1 to activate ITGA3 transcription through the YAP1/TEAD binding sites in human pancreatic cancer cells and KPC derived mouse cells. ZIP4 upregulated YAP1 expression via activation of miR-373 and inhibition of the YAP1 repressor LATS2. Furthermore, upregulation of ZIP4 promoted EMT plasticity, cell adhesion, spheroid formation and organogenesis both in human pancreatic cancer cells, 3D spheroid model, xenograft model, and spontaneous mouse models (KPC and KPCZ) through ZEB1/YAP1-ITGA3 signaling axis. We demonstrated that ZIP4 activates ZEB1 and YAP1 through distinct mechanisms. The ZIP4-miR-373-LATS2-ZEB1/YAP1-ITGA3 signaling axis has a significant impact on pancreatic cancer metastasis and EMT plasticity.
Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea
Li, D;Kim, S;Li, J;Gao, Q;Choi, J;Bian, F;Hu, J;Zhang, Y;Li, J;Lu, R;Li, Y;Pflugfelder, S;Miao, H;Chen, R;
| DOI: 10.1016/j.jtos.2020.12.004
Purpose This study aimed to uncover novel cell types in heterogenous basal limbus of human cornea for identifying LSC at single cell resolution. Methods Single cells of human limbal basal epithelium were isolated from young donor corneas. Single-cell RNA-Sequencing was performed using 10x Genomics platform, followed by clustering cell types through the graph-based visualization method UMAP and unbiased computational informatic analysis. Tissue RNA in situ hybridization with RNAscope, immunofluorescent staining and multiple functional assays were performed using human corneas and limbal epithelial culture models. Results Single-cell transcriptomics of 16,360 limbal basal cells revealed 12 cell clusters belonging to three lineages. A smallest cluster (0.4% of total cells) was identified as LSCs based on their quiescent and undifferentiated states with enriched marker genes for putative epithelial stem cells. TSPAN7 and SOX17 are discovered and validated as new LSC markers based on their exclusive expression pattern and spatial localization in limbal basal epithelium by RNAscope and immunostaining, and functional role in cell growth and tissue regeneration models with RNA interference in cultures. Interestingly, five cell types/states mapping a developmental trajectory of LSC from quiescence to proliferation and differentiation are uncovered by Monocle3 and CytoTRACE pseudotime analysis. The transcription factor networks linking novel signaling pathways are revealed to maintain LSC stemness. Conclusions This human corneal scRNA-Seq identifies the LSC population and uncovers novel cell types mapping the differentiation trajectory in heterogenous limbal basal epithelium. The findings provide insight into LSC concept and lay the foundation for understanding the corneal homeostasis and diseases.