Enamorado, M;Kulalert, W;Han, SJ;Rao, I;Delaleu, J;Link, VM;Yong, D;Smelkinson, M;Gil, L;Nakajima, S;Linehan, JL;Bouladoux, N;Wlaschin, J;Kabat, J;Kamenyeva, O;Deng, L;Gribonika, I;Chesler, AT;Chiu, IM;Le Pichon, CE;Belkaid, Y;
PMID: 36640762 | DOI: 10.1016/j.cell.2022.12.037
Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.
Du, F;Yin, G;Han, L;Liu, X;Dong, D;Duan, K;Huo, J;Sun, Y;Cheng, L;
PMID: 36622575 | DOI: 10.1007/s12264-022-01009-2
The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity (OIH) and analgesic tolerance. Among the different forms of OIH and tolerance, the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved. Here we demonstrated that the loss of peripheral μ-opioid receptors (MORs) or MOR-expressing neurons attenuated thermal tolerance, but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance. To confirm this result, we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons. Consistent with the behavioral results, peripheral MOR loss did not prevent the opening of Aβ mechanical allodynia pathways in the spinal dorsal horn. Therefore, the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance. Future studies should focus more on central mechanisms.
Journal of clinical medicine
Zong, L;Mo, S;Sun, Z;Lu, Z;Chen, J;Yu, S;Xiang, Y;
PMID: 36675462 | DOI: 10.3390/jcm12020530
Assessing survival risk in patients with high-grade endometrial carcinomas has remained challenging. We aimed to investigate the distribution of molecular subtypes and assess their prognostic role in a large cohort of 355 patients with high-grade endometrial carcinoma. Molecular classification was determined using DNA polymerase epsilon (POLE) sequencing as well as immunohistochemical staining for p53 and mismatch repair (MMR) proteins. Endometrial carcinomas were stratified into four subtypes: POLE ultramutated, MMR-deficient, non-specific molecular profile (NSMP), and p53-mutant. This study included 177 and 178 patients with endometrioid and non-endometrioid carcinomas, respectively. Forty-two patients (11.8%) were categorized as POLE ultramutated, 106 (29.9%) as MMR-deficient, 128 (36.1%) as p53-mutant, and 79 (22.2%) as NSMP. Patients of different molecular subtypes had distinct survival times; molecular classification, but not histotype, was significantly associated with survival outcomes. When incorporating molecular classification into the stratification model, 52 patients (15.5%) switched risk groups, with 40 (11.9%) shifting to a lower risk for having a POLE mutation and 12 (3.6%) shifting to a higher risk owing to p53-mutant status. Molecular classification may provide more accurate prognostic information among patients with high-grade endometrial carcinomas and improve their stratification for purposes of clinical management.
Neurocircuitry of Addiction
Salling, M;
| DOI: 10.1016/B978-0-12-823453-2.00002-3
Advancements in neuroscientific methods often drive new waves of insight into our understanding of addiction. While addiction research questions persist, technical improvements can augment our observational sensitivity, allowing us to update and extend existing addiction models through method development, creative application, and scientific discovery. As a result of this iterative process, we have reached the point where neuroscientists can now readily identify, monitor, and control specific neural circuits during behavior, thereby opening new windows of inquiry into the neurobiology of addiction. The objective of this chapter is to familiarize the reader with standard and emerging techniques used to observe and interrogate neural circuitry that are prevalent in contemporary clinical and preclinical addiction neuroscience labs and that are presented throughout the book. This chapter will further discuss the historical context, benefits, and limitations of these techniques with a look forward into how they can be applied to questions of addiction neurocircuitry.
Li, Y;Lih, TM;Dhanasekaran, SM;Mannan, R;Chen, L;Cieslik, M;Wu, Y;Lu, RJ;Clark, DJ;Kołodziejczak, I;Hong, R;Chen, S;Zhao, Y;Chugh, S;Caravan, W;Naser Al Deen, N;Hosseini, N;Newton, CJ;Krug, K;Xu, Y;Cho, KC;Hu, Y;Zhang, Y;Kumar-Sinha, C;Ma, W;Calinawan, A;Wyczalkowski, MA;Wendl, MC;Wang, Y;Guo, S;Zhang, C;Le, A;Dagar, A;Hopkins, A;Cho, H;Leprevost, FDV;Jing, X;Teo, GC;Liu, W;Reimers, MA;Pachynski, R;Lazar, AJ;Chinnaiyan, AM;Van Tine, BA;Zhang, B;Rodland, KD;Getz, G;Mani, DR;Wang, P;Chen, F;Hostetter, G;Thiagarajan, M;Linehan, WM;Fenyö, D;Jewell, SD;Omenn, GS;Mehra, R;Wiznerowicz, M;Robles, AI;Mesri, M;Hiltke, T;An, E;Rodriguez, H;Chan, DW;Ricketts, CJ;Nesvizhskii, AI;Zhang, H;Ding, L;Clinical Proteomic Tumor Analysis Consortium, ;
PMID: 36563681 | DOI: 10.1016/j.ccell.2022.12.001
Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
The Journal of experimental medicine
Chadarevian, JP;Lombroso, SI;Peet, GC;Hasselmann, J;Tu, C;Marzan, DE;Capocchi, J;Purnell, FS;Nemec, KM;Lahian, A;Escobar, A;England, W;Chaluvadi, S;O'Brien, CA;Yaqoob, F;Aisenberg, WH;Porras-Paniagua, M;Bennett, ML;Davtyan, H;Spitale, RC;Blurton-Jones, M;Bennett, FC;
PMID: 36584406 | DOI: 10.1084/jem.20220857
Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622. Biochemical and cell-based assays show no discernable gain or loss of function. G795A- but not wildtype-CSF1R expressing macrophages efficiently engraft the brain of PLX3397-treated mice and persist after cessation of inhibitor treatment. To gauge translational potential, we CRISPR engineered human-induced pluripotent stem cell-derived microglia (iMG) to express G795A. Xenotransplantation studies demonstrate that G795A-iMG exhibit nearly identical gene expression to wildtype iMG, respond to inflammatory stimuli, and progressively expand in the presence of PLX3397, replacing endogenous microglia to fully occupy the brain. In sum, we engineered a human CSF1R variant that enables nontoxic, cell type, and tissue-specific replacement of microglia.
Atlantis Highlights in Intelligent Systems
Huang, Y;He, C;He, C;Wang, C;
| DOI: 10.2991/978-94-6463-030-5_97
With the rapid development of the Internet, network security is the most important issue for businesses and people. Vulnerabilities caused by user input and not treated harmlessly are the easiest to be exploited by hackers. In this paper, a tool named FastTaint is implemented, by using the principle of dynamic taint analysis, the vulnerability detection rate is high and the false positive rate is extremely low. First, the FastTaint tool is based on the proxy mode of behavior injection mode; then there are different instrumentation strategies for Source, Propagator, Sanitizer and Sink to make the detection range more accurate; finally, the taint is marked at the object level and the vulnerability is determined at the leaking point. The FastTaint tool abandons the traditional firewall that relies on the characteristics of requests to detect attacks and creatively uses Interactive Application Security Testing (IAST) technology. It is injected directly into the protected application’s service to provide real-time, function-level protection, and can update the strategy without updating and detect or prevent unknown vulnerabilities without updating the protected application’s code. Experiments show that this tool can quickly and efficiently detect multiple vulnerabilities without requiring the source code, FastTaint can detect multiple vulnerabilities, such as SQL Injection, Cross-Site Request Scripting, Path Traversal, Insecure Forwarding, XPath Injection, OS Injection, SSRF and other vulnerabilities.
Fu, X;Sun, L;Dong, R;Chen, JY;Silakit, R;Condon, LF;Lin, Y;Lin, S;Palmiter, RD;Gu, L;
PMID: 36368323 | DOI: 10.1016/j.cell.2022.10.021
Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.
Senna, I;Piller, S;Ben-Zion, I;Ernst, MO;
PMID: 36278872 | DOI: 10.7554/eLife.78734
Being able to perform adept goal-directed actions requires predictive, feed-forward control, including a mapping between the visually estimated target locations and the motor commands reaching for them. When the mapping is perturbed, e.g., due to muscle fatigue or optical distortions, we are quickly able to recalibrate the sensorimotor system to update this mapping. Here, we investigated whether early visual and visuomotor experience is essential for developing sensorimotor recalibration. To this end, we assessed young individuals deprived of pattern vision due to dense congenital bilateral cataracts who were surgically treated for sight restoration only years after birth. We compared their recalibration performance to such distortion to that of age-matched sighted controls. Their sensorimotor recalibration performance was impaired right after surgery. This finding cannot be explained by their still lower visual acuity alone, since blurring vision in controls to a matching degree did not lead to comparable behavior. Nevertheless, the recalibration ability of cataract-treated participants gradually improved with time after surgery. Thus, the lack of early pattern vision affects visuomotor recalibration. However, this ability is not lost but slowly develops after sight restoration, highlighting the importance of sensorimotor experience gained late in life.
Vladimirovich, NP;Railevna, MG;Nikolaevich, PV;Nikolaevich, GD;Mikhailovich, KV;Leonard, W;Mauric, K;Sergeevich, TP;
PMID: 35876685 | DOI: 10.5146/tjpath.2022.01582
IDH wild-type glioblastomas (GBM) are one of the most malignant and complex tumors for treatment. The urgent question of new therapeutic and diagnostic tools searching should be resolved based on cellular and molecular pathogenesis mechanisms, which remain insufficiently studied. In this study, we aimed to investigate GBM pathogenesis.Using the isolation of different GBM cell populations and the cell cultures, animal models, and molecular genetic methods, we tried to clarify the picture of GBM pathogenesis by constructing a projection from different glioma stem cells types to an integral neoplasm.We have shown a potential transformation pathway for both glioma stem cells and four definitive cell populations during gliomagenesis. Moreover, we have characterized each population, taking into account its place in the pathogenetic continuum, with a description of the most fundamental molecular and functional properties.Finally, we have formed a complex holistic concept of the pathogenetic evolution of GBM at the cell-population level by integrating our results with the data of the world literature.
Morrow, MR;Batchuluun, B;Wu, J;Ahmadi, E;Leroux, JM;Mohammadi-Shemirani, P;Desjardins, EM;Wang, Z;Tsakiridis, EE;Lavoie, DCT;Reihani, A;Smith, BK;Kwiecien, JM;Lally, JSV;Nero, TL;Parker, MW;Ask, K;Scott, JW;Jiang, L;Paré, G;Pinkosky, SL;Steinberg, GR;
PMID: 35675800 | DOI: 10.1016/j.cmet.2022.05.004
Elevated liver de novo lipogenesis contributes to non-alcoholic steatohepatitis (NASH) and can be inhibited by targeting acetyl-CoA carboxylase (ACC). However, hypertriglyceridemia limits the use of pharmacological ACC inhibitors as a monotherapy. ATP-citrate lyase (ACLY) generates acetyl-CoA and oxaloacetate from citrate, but whether inhibition is effective for treating NASH is unknown. Here, we characterize a new mouse model that replicates many of the pathological and molecular drivers of NASH and find that genetically inhibiting ACLY in hepatocytes reduces liver malonyl-CoA, oxaloacetate, steatosis, and ballooning as well as blood glucose, triglycerides, and cholesterol. Pharmacological inhibition of ACLY mirrors genetic inhibition but has additional positive effects on hepatic stellate cells, liver inflammation, and fibrosis. Mendelian randomization of human variants that mimic reductions in ACLY also associate with lower circulating triglycerides and biomarkers of NASH. These data indicate that inhibiting liver ACLY may be an effective approach for treatment of NASH and dyslipidemia.
Cellular Architecture of Human Brain Metastases
Gonzalez, H;Mei, W;Robles, I;Hagerling, C;Allen, B;Nanjaraj, A;Verbeek, T;Kalavacherla, S;van Gogh, M;Georgiou, S;Daras, M;Philips, J;Spitzer, M;Roose, J;Werb, Z;
| DOI: 10.2139/ssrn.3883639
Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs as a resource, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico- approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and reveal stromal immunosuppressive states, enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a novel framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental- traits.