Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (90)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • (-) Remove GLI1 filter GLI1 (51)
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • (-) Remove Cre filter Cre (33)
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (20) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (15) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (10) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (10) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Duplex (4) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (3) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope 2.5 LS Assay - RED (1) Apply RNAscope 2.5 LS Assay - RED filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Multiplex Fluorescent v1 (1) Apply RNAscope Multiplex Fluorescent v1 filter

Research area

  • Neuroscience (34) Apply Neuroscience filter
  • Cancer (20) Apply Cancer filter
  • Development (9) Apply Development filter
  • Other (9) Apply Other filter
  • Developmental (7) Apply Developmental filter
  • Stem Cells (7) Apply Stem Cells filter
  • HPV (4) Apply HPV filter
  • Bone (3) Apply Bone filter
  • other: Aging (2) Apply other: Aging filter
  • Other: Osteoarthritis (2) Apply Other: Osteoarthritis filter
  • Regeneration (2) Apply Regeneration filter
  • Addiction (1) Apply Addiction filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Circadian Rhythms (1) Apply Circadian Rhythms filter
  • Devlopment (1) Apply Devlopment filter
  • diabetes (1) Apply diabetes filter
  • Eating (1) Apply Eating filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • human health (1) Apply human health filter
  • Inflammation (1) Apply Inflammation filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Metabolism (1) Apply Metabolism filter
  • Nueroscience (1) Apply Nueroscience filter
  • Obesity (1) Apply Obesity filter
  • Other: Obesity (1) Apply Other: Obesity filter
  • Other: Vomeronasal receptor gene clusters (1) Apply Other: Vomeronasal receptor gene clusters filter
  • Other; Kidney Fibrosis (1) Apply Other; Kidney Fibrosis filter
  • Pain (1) Apply Pain filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Sleep (1) Apply Sleep filter
  • Stem cell (1) Apply Stem cell filter
  • therapeutics (1) Apply therapeutics filter
  • Trauma (1) Apply Trauma filter
  • Zinc (1) Apply Zinc filter

Category

  • Publications (90) Apply Publications filter
Tumor Architecture and Notch Signaling Modulate Drug Response in Basal Cell Carcinoma

Cancer Cell

2018 Jan 27

Eberl M, Mangelberger D, Swanson JB, Verhaegen ME, Harms PW, Frohm ML, Dlugosz AA, Wong SY.
PMID: - | DOI: 10.1016/j.ccell.2017.12.015

Hedgehog (Hh) pathway inhibitors such as vismodegib are highly effective for treating basal cell carcinoma (BCC); however, residual tumor cells frequently persist and regenerate the primary tumor upon drug discontinuation. Here, we show that BCCs are organized into two molecularly and functionally distinct compartments. Whereas interior Hh+/Notch+ suprabasal cells undergo apoptosis in response to vismodegib, peripheral Hh+++/Notch− basal cells survive throughout treatment. Inhibiting Notch specifically promotes tumor persistence without causing drug resistance, while activating Notch is sufficient to regress already established lesions. Altogether, these findings suggest that the three-dimensional architecture of BCCs establishes a natural hierarchy of drug response in the tumor and that this hierarchy can be overcome, for better or worse, by modulating Notch.

A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch.

Genesis.

2017 Sep 05

Plummer NW, Ungewitter EK, Smith KG, Yao HH, Jensen P.
PMID: 28875587 | DOI: 10.1002/dvg.23067

Recombinase responsive mouse lines expressing diphtheria toxin subunit A (DTA) are well established tools for targeted ablation of genetically defined cell populations. Here we describe a new knock-in allele at the Gt(Rosa)26Sor locus that retains the best features of previously described DTA alleles-including a CAG promoter, attenuated mutant DTA cDNA, and ubiquitous EGFP labeling-with the addition of a Cre-dependent FLEx switch for tight control of expression. The FLEx switch consists of two pairs of antiparallel lox sites requiring Cre-mediated recombination for inversion of the DTA to the proper orientation for transcription. We demonstrate its utility by Cre-dependent ablation of both a broad domain in the embryonic nervous system and a discrete population of cells in the fetal gonads. We conclude that this new DTA line is useful for targeted ablation of genetically-defined cell populations.

GLI2 Modulated by SUFU and SPOP Induces Intestinal Stem Cell Niche Signals in Development and Tumorigenesis

Cell Rep

2019 Jun 04

Coquenlorge S, Yin WC, Yung T, Pan J, Zhang X, Mo R, Belik J, Hui CC, Kim TH.
PMID: 31167144 | DOI: 10.1016/j.celrep.2019.05.016

Gut mesenchyme provides key stem cell niche signals such as Wnt ligands, but how these signals are regulated is unclear. Because Hedgehog (Hh) signaling is critical for gut mesenchymal development and tumorigenesis, we investigated Hh-mediated mechanisms by analyzing mice deleted for key negative regulators of Hh signaling, Sufu and/or Spop, in the gut mesenchyme, and demonstrated their dosage-dependent roles. Although these mutants exhibit abnormal mesenchymal cell growth and functionally defective muscle layers, villification is completed with proper mesenchymal clustering, implying a permissive role for Hh signaling. These mesenchymal defects are partially rescued by Gli2 reduction. Consistent with increased epithelial proliferation caused by abnormal Hh activation in development, Sufu reduction promotes intestinal tumorigenesis, whereas Gli2 heterozygosity suppresses it. Our analyses of chromatin and GLI2 binding genomic regions reveal its transcriptional regulation of stem cell niche signals through enhancers, providing mechanistic insight into the intestinal stem cell niche in development and tumorigenesis

A CRE/DRE dual recombinase transgenic mouse reveals synaptic zinc-mediated thalamocortical neuromodulation

Science advances

2023 Jun 09

Kouvaros, S;Bizup, B;Solis, O;Kumar, M;Ventriglia, E;Curry, FP;Michaelides, M;Tzounopoulos, T;
PMID: 37294760 | DOI: 10.1126/sciadv.adf3525

Synaptic zinc is a neuromodulator that shapes synaptic transmission and sensory processing. The maintenance of synaptic zinc is dependent on the vesicular zinc transporter, ZnT3. Hence, the ZnT3 knockout mouse has been a key tool for studying the mechanisms and functions of synaptic zinc. However, the use of this constitutive knockout mouse has notable limitations, including developmental, compensatory, and brain and cell type specificity issues. To overcome these limitations, we developed and characterized a dual recombinase transgenic mouse, which combines the Cre and Dre recombinase systems. This mouse allows for tamoxifen-inducible Cre-dependent expression of exogenous genes or knockout of floxed genes in ZnT3-expressing neurons and DreO-dependent region and cell type-specific conditional ZnT3 knockout in adult mice. Using this system, we reveal a neuromodulatory mechanism whereby zinc release from thalamic neurons modulates N-methyl-d-aspartate receptor activity in layer 5 pyramidal tract neurons, unmasking previously unknown features of cortical neuromodulation.
Clustering of vomeronasal receptor genes is required for transcriptional stability but not for choice

Science advances

2022 Nov 18

Dietschi, Q;Tuberosa, J;Fodoulian, L;Boillat, M;Kan, C;Codourey, J;Pauli, V;Feinstein, P;Carleton, A;Rodriguez, I;
PMID: 36383665 | DOI: 10.1126/sciadv.abn7450

Rodents perceive pheromones via vomeronasal receptors encoded by highly evolutionarily dynamic Vr and Fpr gene superfamilies. We report here that high numbers of V1r pseudogenes are scattered in mammalian genomes, contrasting with the clustered organization of functional V1r and Fpr genes. We also found that V1r pseudogenes are more likely to be expressed when located in a functional V1r gene cluster than when isolated. To explore the potential regulatory role played by the association of functional vomeronasal receptor genes with their clusters, we dissociated the mouse Fpr-rs3 from its native cluster via transgenesis. Singular and specific transgenic Fpr-rs3 transcription was observed in young vomeronasal neurons but was only transient. Our study of natural and artificial dispersed gene duplications uncovers the existence of transcription-stabilizing elements not coupled to vomeronasal gene units but rather associated with vomeronasal gene clusters and thus explains the evolutionary conserved clustered organization of functional vomeronasal genes.
Genetic encoding of an esophageal motor circuit

Cell reports

2022 Jun 14

Coverdell, TC;Abraham-Fan, RJ;Wu, C;Abbott, SBG;Campbell, JN;
PMID: 35705034 | DOI: 10.1016/j.celrep.2022.110962

Motor control of the striated esophagus originates in the nucleus ambiguus (nAmb), a vagal motor nucleus that also contains upper airway motor neurons and parasympathetic preganglionic neurons for the heart and lungs. We disambiguate nAmb neurons based on their genome-wide expression profiles, efferent circuitry, and ability to control esophageal muscles. Our single-cell RNA sequencing analysis predicts three molecularly distinct nAmb neuron subtypes and annotates them by subtype-specific marker genes: Crhr2, Vipr2, and Adcyap1. Mapping the axon projections of the nAmb neuron subtypes reveals that Crhr2nAmb neurons innervate the esophagus, raising the possibility that they control esophageal muscle function. Accordingly, focal optogenetic stimulation of cholinergic Crhr2+ fibers in the esophagus results in contractions. Activating Crhr2nAmb neurons has no effect on heart rate, a key parasympathetic function of the nAmb, whereas activating all of the nAmb neurons robustly suppresses heart rate. Together, these results reveal a genetically defined circuit for motor control of the esophagus.
Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking

Neuron

2021 May 21

Pribiag, H;Shin, S;Wang, EH;Sun, F;Datta, P;Okamoto, A;Guss, H;Jain, A;Wang, XY;De Freitas, B;Honma, P;Pate, S;Lilascharoen, V;Li, Y;Lim, BK;
PMID: 34048697 | DOI: 10.1016/j.neuron.2021.05.002

Drugs of abuse induce persistent remodeling of reward circuit function, a process thought to underlie the emergence of drug craving and relapse to drug use. However, how circuit-specific, drug-induced molecular and cellular plasticity can have distributed effects on the mesolimbic dopamine reward system to facilitate relapse to drug use is not fully elucidated. Here, we demonstrate that dopamine receptor D3 (DRD3)-dependent plasticity in the ventral pallidum (VP) drives potentiation of dopamine release in the nucleus accumbens during relapse to cocaine seeking after abstinence. We show that two distinct VP DRD3+ neuronal populations projecting to either the lateral habenula (LHb) or the ventral tegmental area (VTA) display different patterns of activity during drug seeking following abstinence from cocaine self-administration and that selective suppression of elevated activity or DRD3 signaling in the LHb-projecting population reduces drug seeking. Together, our results uncover how circuit-specific DRD3-mediated plasticity contributes to the process of drug relapse.
Lineage tracing analysis defines erythropoietin-producing cells as a distinct subpopulation of resident fibroblasts with unique behaviors

Kidney international

2022 May 26

Kaneko, K;Sato, Y;Uchino, E;Toriu, N;Shigeta, M;Kiyonari, H;Endo, S;Fukuma, S;Yanagita, M;
PMID: 35644281 | DOI: 10.1016/j.kint.2022.04.026

Erythropoietin (Epo) is produced by a subpopulation of resident fibroblasts in the healthy kidney. We have previously demonstrated that, during kidney fibrosis, kidney fibroblasts including Epo-producing cells transdifferentiate into myofibroblasts and lose their Epo-producing ability. However, it remains unclear whether Epo-producing cells survive and transform into myofibroblasts during fibrosis because previous studies did not specifically label Epo-producing cells in pathophysiological conditions. Here, we generated EpoCreERT2/+ mice, a novel mouse strain that enables labeling of Epo-producing cells at desired time points and examined the behaviors of Epo-producing cells under pathophysiological conditions. Lineage -labeled cells that were producing Epo when labeled were found to be a small subpopulation of fibroblasts located in the interstitium of the kidney, and their number increased during phlebotomy-induced anemia. Around half of lineage-labeled cells expressed Epo mRNA, and this percentage was maintained even 16 weeks after recombination, supporting the idea that a distinct subpopulation of cells with Epo-producing ability makes Epo repeatedly. During fibrosis caused by ureteral obstruction, EpoCreERT2/+ -labeled cells were found to transdifferentiate into myofibroblasts with concomitant loss of Epo-producing ability, and their numbers and the proportion among resident fibroblasts increased during fibrosis, indicating their high proliferative capacity. Finally, we confirmed that EpoCreERT2/+-labeled cells that lost their Epo-producing ability during fibrosis regained their ability after kidney repair due to relief of the ureteral obstruction. Thus, our analyses have revealed previously unappreciated characteristic behaviors of Epo-producing cells, which had not been clearly distinguished from those of resident fibroblasts.
Hippocampal and thalamic afferents form distinct synaptic microcircuits in the mouse infralimbic frontal cortex

Cell reports

2021 Oct 19

Graham, K;Spruston, N;Bloss, EB;
PMID: 34686328 | DOI: 10.1016/j.celrep.2021.109837

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.
Reactivation of the Hedgehog pathway in esophageal progenitors turns on an embryonic-like program to initiate columnar metaplasia

Cell stem cell

2021 Apr 14

Vercauteren Drubbel, A;Pirard, S;Kin, S;Dassy, B;Lefort, A;Libert, F;Nomura, S;Beck, B;
PMID: 33882290 | DOI: 10.1016/j.stem.2021.03.019

Columnar metaplasia of the esophagus is the main risk factor for esophageal adenocarcinoma. There is a lack of evidence to demonstrate that esophageal progenitors can be the source of columnar metaplasia. In this study, using transgenic mouse models, lineage tracing, single-cell RNA sequencing, and transcriptomic and epigenetic profiling, we found that the activation of the Hedgehog pathway in esophageal cells modifies their differentiation status in vivo. This process involves an initial step of dedifferentiation into embryonic-like esophageal progenitors. Moreover, a subset of these cells undergoes full squamous-to-columnar conversion and expresses selected intestinal markers. These modifications of cell fate are associated with remodeling of the chromatin and the appearance of Sox9. Using a conditional knockout mouse, we show that Sox9 is required for columnar conversion but not for the step of dedifferentiation. These results provide insight into the mechanisms by which esophageal cells might initiate columnar metaplasia.
Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

Nat Cell Biol.

2017 May 29

Hoeck JD, Biehs B, Kurtova AV, Kljavin NM, de Sousa E Melo F, Alicke B, Koeppen H, Modrusan Z, Piskol R, de Sauvage FJ.
PMID: 28553937 | DOI: 10.1038/ncb3535

Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5+(leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5+ cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34+ (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34+ cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5+ cells and inhibition of Wnt signalling prevents Lgr5+ cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

Liraglutide Modulates Appetite and Body Weight Via GLP-1R-Expressing Glutamatergic Neurons

Diabetes.

2018 May 18

Adams JM, Pei H, Sandoval DA, Seeley RJ, Chang RB, Liberles SD, Olson DP.
PMID: 29776968 | DOI: 10.2337/db17-1385

Glucagon-like peptide-1 receptor (GLP-1R) agonists are FDA-approved weight loss drugs. Despite their widespread use, the sites of action through which GLP-1R agonists (GLP1RAs) impact appetite and body weight are still not fully understood. Here, we determined whether GLP-1Rs in either GABAergic or glutamatergic neurons are necessary for the acute and chronic effects of the GLP1RA liraglutide on food intake, visceral illness, body weight and neural network activation. We found that mice lacking GLP-1Rs in vGAT-expressing GABAergic neurons responded identically to controls in all parameters measured, whereas deletion of GLP-1Rs in vGlut2-expressing glutamatergic neurons eliminated liraglutide-induced weight loss and visceral illness and severely attenuated its effects on feeding. Concomitantly, deletion of GLP-1Rs from glutamatergic neurons completely abolished the neural network activation observed after liraglutide administration. We conclude that liraglutide activates a dispersed but discrete neural network to mediate its physiological effects, and that these effects require GLP-1R expression on glutamatergic but not GABAergic neurons.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?