Parekh PK, Logan RW, Ketchesin KD, Becker-Krail D, Shelton MA, Hildebrand MA, Barko K, Huang YH, McClung CA.
PMID: 30962277 | DOI: 10.1523/JNEUROSCI.2233-18.2019
The circadian transcription factor neuronal PAS domain 2 (NPAS2) is linked to psychiatric disorders associated with altered reward sensitivity. The expression of Npas2 is preferentially enriched in the mammalian forebrain, including the nucleus accumbens (NAc), a major neural substrate of motivated and reward behavior. Previously, we demonstrated that down-regulation of NPAS2 in the NAc reduces the conditioned behavioral response to cocaine in mice. We also showed that Npas2 is preferentially enriched in dopamine receptor 1 containing medium spiny neurons (D1R-MSNs) of the striatum. To extend these studies, we investigated the impact of NPAS2 disruption on accumbal excitatory synaptic transmission and strength, along with the behavioral sensitivity to cocaine reward in a cell-type specific manner. Viral-mediated knockdown of Npas2 in the NAc of male and female C57BL/6J mice increased the excitatory drive onto MSNs. Using Drd1a-tdTomato mice in combination with viral knockdown, we determined these synaptic adaptations were specific to D1R-MSNs relative to non-D1R-MSNs. Interestingly, NAc-specific knockdown of Npas2 blocked cocaine-induced enhancement of synaptic strength and glutamatergic transmission specifically onto D1R-MSNs. Lastly, we designed, validated, and employed a novel Cre-inducible short-hairpin RNA virus for MSN-subtype specific knockdown of Npas2 Cell-type specific Npas2 knockdown in D1R-MSNs, but not D2R-MSNs, in the NAc reduced cocaine conditioned place preference. Together, our results demonstrate that NPAS2 regulates excitatory synapses of D1R-MSNs in the NAc and cocaine reward-related behavior.SIGNIFICANCE STATEMENTDrug addiction is a widespread public health concern often comorbid with other psychiatric disorders. Disruptions of the circadian clock can predispose or exacerbate substance abuse in vulnerable individuals. We demonstrate a role for the core circadian protein, NPAS2, in mediating glutamatergic neurotransmission at medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a region critical for reward processing. We find that NPAS2 negatively regulates functional excitatory synaptic plasticity in the NAc and is necessary for cocaine-induced plastic changes in MSNs expressing the dopamine 1 receptor (D1R). We further demonstrate disruption of NPAS2 in D1R-MSNs produces augmented cocaine preference. These findings highlight the significance of cell-type specificity in mechanisms underlying reward regulation by NPAS2 and extend our knowledge of its function.
SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts
Sun, J;Shin, DY;Eiseman, M;Yallowitz, AR;Li, N;Lalani, S;Li, Z;Cung, M;Bok, S;Debnath, S;Marquez, SJ;White, TE;Khan, AG;Lorenz, IC;Shim, JH;Lee, FS;Xu, R;Greenblatt, MB;
PMID: 34326333 | DOI: 10.1038/s41467-021-24819-w
Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.
Physiol Behav. 2014 Apr 2. pii: S0031-9384(14)00173-5.
Smith JA, Wang L, Hiller H, Taylor CT, de Kloet AD, Krause EG.
PMID: 24704193 | DOI: 10.1016/j.physbeh.2014.03.027.
Previous investigation by our laboratory found that acute hypernatremia potentiates an oxytocinergic tone that inhibits parvocellular neurosecretory neurons in the paraventricular nucleus of the hypothalamus (PVN), attenuates restraint-induced surges in corticosterone (CORT), and reduces anxiety-like behavior in male rats. To investigate the neural mechanisms mediating these effects and extend our findings to a more versatile species, we repeated our studies using laboratory mice. In response to 2.0M NaCl injections, mice had increased plasma sodium concentrations which were associated with a blunted rise in CORT subsequent to restraint challenge relative to 0.15M NaCl injected controls. Immunofluorescent identification of the immediate early gene product Fos found that 2.0M NaCl treatment increased the number of activated neurons producing oxytocin in the PVN. To evaluate the effect of acute hypernatremia on PVN neurons producing corticotropin-releasing hormone (CRH), we used the Cre-lox system to generate mice that produced the red fluorescent protein, tdTomato, in cells that had Cre-recombinase activity driven by CRH gene expression. Analysis of brain tissue from these CRH-reporter mice revealed that 2.0M NaCl treatment caused a dramatic reduction in Fos-positive nuclei specifically in CRH-producing PVN neurons. This altered pattern of activity was predictive of alleviated anxiety-like behavior as mice administered 2.0M NaCl spent more time exploring the open arms of an elevated-plus maze than 0.15M NaCl treated controls. Taken together, these results further implicate an oxytocin-dependent inhibition of CRH neurons in the PVN and demonstrate the impact that slight elevations in plasma sodium have on the hypothalamic-pituitary-adrenocortical axis output and anxiety-like behavior.
Pyczek J, Khizanishvili N, Kuzyakova M, Zabel S, Bauer J, Nitzki F, Emmert S, Sch�n MP, Boukamp P, Schildhaus HU, Uhmann A, Hahn H
PMID: 31867038 | DOI: 10.3389/fgene.2019.01185
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin tumor in humans. Although current therapies are sufficient to clear the tumor in many cases, the overall risk of cSCC metastasis is still 5%. Alternative treatment options could help to overcome this situation. Here we focused on the role of the Hedgehog (HH) signaling pathway and its interplay with epidermal growth factor receptor (EGFR) signaling in cSCC. The analyses revealed that, despite lack of Sonic HH (SHH) expression, a subset of human cSCC can express GLI1, a marker for active HH signaling, within distinct tumor areas. In contrast, all tumors strongly express EGFR and the hair follicle stem cell marker SOX9 at the highly proliferative tumor-stroma interface, whereas central tumor regions with a more differentiated stratum spinosum cell type lack both EGFR and SOX9 expression. In vitro experiments indicate that activation of EGFR signaling in the human cSCC cell lines SCL-1, MET-1, and MET-4 leads to GLI1 inhibition via the MEK/ERK axis without affecting cellular proliferation. Of note, EGFR activation also inhibits cellular migration of SCL-1 and MET-4 cells. Because proliferation and migration of the cells is also not altered by a GLI1 knockdown, GLI1 is apparently not involved in processes of aggressiveness in established cSCC tumors. In contrast, our data rather suggest a negative correlation between Gli1 expression level and cSCC formation because skin of Ptch +/- mice with slightly elevated Gli1 expression levels is significantly less susceptible to chemically-induced cSCC formation compared to murine wildtype skin. Although not yet formally validated, these data open the possibility that GLI1 (and thus HH signaling) may antagonize cSCC initiation and is not involved in cSCC aggressiveness, at least in a subset of cSCC.
The Journal of comparative neurology
Biancardi, V;Yang, X;Ding, X;Passi, D;Funk, GD;Pagliardini, S;
PMID: 37211631 | DOI: 10.1002/cne.25497
Rhythmic inspiratory activity is generated in the preBötzinger complex (preBötC), a neuronal network located bilaterally in the ventrolateral medulla. Cholinergic neurotransmission affects respiratory rhythmogenic neurons and inhibitory glycinergic neurons in the preBötC. Acetylcholine has been extensively investigated given that cholinergic fibers and receptors are present and functional in the preBötC, are important in sleep/wake cycling, and modulate inspiratory frequency through its action on preBötC neurons. Despite its role in modulating inspiratory rhythm, the source of acetylcholine input to the preBötC is not known. In the present study, we used retrograde and anterograde viral tracing approaches in transgenic mice expressing Cre-recombinase driven by the choline acetyltransferase promoter to identify the source of cholinergic inputs to the preBötC. Surprisingly, we observed very few, if any, cholinergic projections originating from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT), two main cholinergic, state-dependent systems long hypothesized as the main source of cholinergic inputs to the preBötC. On the contrary, we identified glutamatergic and GABAergic/glycinergic neurons in the PPT/LDT that send projections to the preBötC. Although these neurons contribute minimally to the direct cholinergic modulation of preBötC neurons, they could be involved in state-dependent regulation of breathing. Our data also suggest that the source of cholinergic inputs to the preBötC appears to originate from cholinergic neurons in neighboring regions of the medulla, the intermediate reticular formation, the lateral paragigantocellularis, and the nucleus of the solitary tract.
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Jing, D;Chen, Z;Men, Y;Yi, Y;Wang, Y;Wang, J;Yi, J;Wan, L;Shen, B;Feng, JQ;Zhao, Z;Zhao, H;Li, C;
PMID: 35443291 | DOI: 10.1002/jbmr.4561
02 May 2022: This Accepted Article published in error. The article is under embargo and will publish in Early View in July 2022.This article is protected by
Maynard KR, Kardian A, Hill JL, Mai Y, Barry B, Hallock HL, Jaffe AE, Martinowich K
PMID: 31941661 | DOI: 10.1523/ENEURO.0310-19.2019
Brain-derived neurotrophic factor (BDNF) signals through its cognate receptor tropomyosin receptor kinase B (TrkB) to promote the function of several classes of inhibitory interneurons. We previously reported that loss of BDNF-TrkB signaling in cortistatin (Cort)-expressing interneurons leads to behavioral hyperactivity and spontaneous seizures in mice. We performed bulk RNA sequencing (RNA-seq) from the cortex of mice with disruption of BDNF-TrkB signaling in cortistatin interneurons, and identified differential expression of genes important for excitatory neuron function. Using translating ribosome affinity purification and RNA-seq, we define a molecular profile for Cort-expressing inhibitory neurons and subsequently compare the translatome of normal and TrkB-depleted Cort neurons, revealing alterations in calcium signaling and axon development. Several of the genes enriched in Cort neurons and differentially expressed in TrkB-depleted neurons are also implicated in autism and epilepsy. Our findings highlight TrkB-dependent molecular pathways as critical for the maturation of inhibitory interneurons and support the hypothesis that loss of BDNF signaling in Cort interneurons leads to altered excitatory/inhibitory balance
Iwasaki, M;Lefevre, A;Althammer, F;Clauss Creusot, E;Łąpieś, O;Petitjean, H;Hilfiger, L;Kerspern, D;Melchior, M;Küppers, S;Krabichler, Q;Patwell, R;Kania, A;Gruber, T;Kirchner, MK;Wimmer, M;Fröhlich, H;Dötsch, L;Schimmer, J;Herpertz, SC;Ditzen, B;Schaaf, CP;Schönig, K;Bartsch, D;Gugula, A;Trenk, A;Blasiak, A;Stern, JE;Darbon, P;Grinevich, V;Charlet, A;
PMID: 36828816 | DOI: 10.1038/s41467-023-36641-7
The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.
Wang L, Hou S, Han YG.
PMID: 27214567 | DOI: 10.1038/nn.4307.
The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex, which reflects the expansion of neural progenitors, especially basal progenitors including basal radial glia (bRGs) and intermediate progenitor cells (IPCs). We found that constitutively active Sonic hedgehog (Shh) signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but Shh signaling was not strongly active in the mouse embryonic neocortex, and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically, Shh signaling increased the initial generation and self-renewal of bRGs and IPC proliferation in mice and the initial generation of bRGs in human cerebral organoids. Thus, robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding.
Sci Rep. 2019 Jan 18;9(1):226.
Lim Y, Cho IT, Shi X, Grinspan JB, Cho G, Golden JA.
PMID: PMID: 30659230 | DOI: DOI:10.1038/s41598-018-36194-6
Early brain development requires a tight orchestration between neural tube patterning and growth. How pattern formation and brain growth are coordinated is incompletely understood. Previously we showed that aristaless-related homeobox (ARX), a paired-like transcription factor, regulates cortical progenitor pool expansion by repressing an inhibitor of cell cycle progression. Here we show that ARX participates in establishing dorsoventral identity in the mouse forebrain. In Arx mutant mice, ventral genes, including Olig2, are ectopically expressed dorsally. Furthermore, Gli1 is upregulated, suggesting an ectopic activation of SHH signaling. We show that the ectopic Olig2 expression can be repressed by blocking SHH signaling, implicating a role for SHH signaling in Olig2 induction. We further demonstrate that the ectopic Olig2 accounts for the reduced Pax6 and Tbr2 expression, both dorsal specific genes essential for cortical progenitor cell proliferation. These data suggest a link between the control of dorsoventral identity of progenitor cells and the control of their proliferation. In summary, our data demonstrate that ARX functions in a gene regulatory network integrating normal forebrain patterning and growth, providing important insight into how mutations in ARX can disrupt multiple aspects of brain development and thus generate a wide spectrum of neurodevelopmental phenotypes observed in human patients.
Development (Cambridge, England)
Qiu, T;Hutečková, B;Seppala, M;Cobourne, MT;Chen, Z;Hovořáková, M;Buchtová, M;Tucker, AS;
PMID: 36971701 | DOI: 10.1242/dev.201464
The vestibular lamina (VL) forms the oral vestibule, creating a gap between the teeth, lips and cheeks. In a number of ciliopathies, formation of the vestibule is defective, leading to the creation of multiple frenula. In contrast to the neighbouring dental lamina, which forms the teeth, little is known about the genes that pattern the VL. Here, we establish a molecular signature for the usually non-odontogenic VL in mice and highlight several genes and signalling pathways that may play a role in its development. For one of these, the Sonic hedgehog (Shh) pathway, we show that co-receptors Gas1, Cdon and Boc are highly expressed in the VL and act to enhance the Shh signal from the forming incisor region. In Gas1 mutant mice, expression of Gli1 was disrupted and the VL epithelium failed to extend due to a loss of proliferation. This defect was exacerbated in Boc/Gas1 double mutants and could be phenocopied using cyclopamine in culture. Signals from the forming teeth, therefore, control development of the VL, coordinating the development of the dentition and the oral cavity.
Cutando, L;Puighermanal, E;Castell, L;Tarot, P;Belle, M;Bertaso, F;Arango-Lievano, M;Ango, F;Rubinstein, M;Quintana, A;Chédotal, A;Mameli, M;Valjent, E;
PMID: 35710984 | DOI: 10.1038/s41593-022-01092-8
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.