ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cellular and molecular gastroenterology and hepatology
2022 May 13
Xie, L;Fletcher, RB;Bhatia, D;Shah, D;Phipps, J;Deshmukh, S;Zhang, H;Ye, J;Lee, S;Le, L;Newman, M;Chen, H;Sura, A;Gupta, S;Sanman, LE;Yang, F;Meng, W;Baribault, H;Vanhove, GF;Yeh, WC;Li, Y;Lu, C;
PMID: 35569814 | DOI: 10.1016/j.jcmgh.2022.05.003
Hum Pathol.
2018 Jul 30
Hsieh MS, Lee YH, Jin YT, Huang WC.
PMID: 30071233 | DOI: 10.1016/j.humpath.2018.07.026
HPV-related multiphenotypic sinonasal carcinoma (HMSC) is associated with high-risk human papillomavirus (HR-HPV) infection. Using HR-HPV mRNA in situ hybridization (ISH), we reported six new HMSC cases and compared their histopathology with that of sinonasal adenoid cystic carcinoma (ACC). Using p16 immunohistochemistry (IHC) and HR-HPV ISH, we retrospectively identified six HMSC cases. All HMSC cases were positive for HR-HPV mRNA ISH and p16 IHC. Two HMSC cases had overlying atypical squamous epithelium and one also had invasive squamous cell carcinoma (SCC). All HMSC were SOX10-positive whereas the overlying atypical squamous epithelium and the SCC were SOX10-negative. One atypical HMSC-like case was also identified which was positive for HR-HPV mRNA ISH, HR-HPV DNA ISH, SOX10 IHC, but negative for p16 IHC. This study showed that HR-HPV mRNA ISH was a useful tool to diagnose HMSC and had stronger signals than HR-HPV DNA ISH. HR-HPV E6/E7 mRNA could be identified in the overlying atypical squamous epithelium as well as the invasive SCC. A combination of p16 and SOX10 IHC will be a useful screening panel for HMSC followed by confirmatory HR-HPV mRNA ISH test.
Clin Gastroenterol Hepatol. 2014 Nov 21.
Rajendra S, Wang B, Pavey D, Sharma P, Yang T, Lee CS, Gupta N, Ball MJ, Gill RS, Wu X.
Dev Biol.
2017 Jan 30
Goad J, Ko YA, Kumar M, Syed SM, Tanwar PS.
PMID: 28153546 | DOI: 10.1016/j.ydbio.2017.01.015
In mice, implantation always occurs towards the antimesometrial side of the uterus, while the placenta develops at the mesometrial side. What determines this particular orientation of the implanting blastocyst remains unclear. Uterine glands are critical for implantation and pregnancy. In this study, we showed that uterine gland development and active Wnt signalling activity is limited to the antimesometrial side of the uterus. Dkk2, a known antagonist of Wnt signalling, is only present at the mesometrial side of the uterus. Imaging of whole uterus, thick uterine sections (100-1000μm), and individual glands revealed that uterine glands are simple tubes with branches that are directly connected to the luminal epithelium and are only present towards the antimesometrial side of the uterus. By developing a unique mouse model targeting the uterine epithelium, we demonstrated that Wnt/β-catenin signaling is essential for prepubertal gland formation and normal implantation, but dispensable for postpartum gland development and regeneration. Our results for the first time have provided a probable explanation for the antimesometrial bias for implantation.
Nat Cell Biol.
2017 May 29
Hoeck JD, Biehs B, Kurtova AV, Kljavin NM, de Sousa E Melo F, Alicke B, Koeppen H, Modrusan Z, Piskol R, de Sauvage FJ.
PMID: 28553937 | DOI: 10.1038/ncb3535
Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5+(leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5+ cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34+ (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34+ cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5+ cells and inhibition of Wnt signalling prevents Lgr5+ cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.
JAMA Oncol.
2016 Dec 08
D'Souza G, Westra WH, Wang SJ, van Zante A, Wentz A, Kluz N, Rettig E, Ryan WR, Ha PK, Kang H, Bishop J, Quon H, Kiess AP, Richmon JD, Eisele DW, Fakhry C.
PMID: 27930766 | DOI: 10.1001/jamaoncol.2016.3067
Infectious Agents and Cancer
2019 Mar 05
Kiyuna A, Ikegami T, Uehara T, Hirakawa H, Agena S, Uezato J, Kondo S, Yamashita Y, Deng Z, Maeda H, Suzuki M, Ganaha A.
PMID: - | DOI: 10.1186/s13027-019-0224-y
Background
Oropharyngeal cancers associated with high-risk type human papillomavirus (HR-HPV) infection have better prognosis than virus negative cancers. Similarly, the HPV status in laryngeal cancer (LC) may be associated with better outcome.
Methods
Samples from 88 patients with LC were investigated using the polymerase chain reaction (PCR) and p16 immunohistochemistry for HR-HPV analysis. The cut-off point for p16 overexpression was diffuse (≥75%) tumor expression with at least moderate (+ 2/3) staining intensity.
Results
The 5-year cumulative survival (CS) rate was 80.7% in all patients with LC. According to a combination of HR-HPV DNA status and p16 overexpression, subjects with LC were divided into four groups: HR-HPV DNA-positive/p16 overexpression-positive (n = 5, 5.7%; CS = 100%), HR-HPV DNA-positive/p16 overexpression-negative (n = 11, 12.5%; CS =81.8%), HR-HPV DNA-negative/p16 overexpression-positive (n = 0), and HR-HPV DNA-negative/p16 overexpression-negative (n = 72, 81.8%; CS = 79.5%). HR-HPV DNA-positive/p16-positive cases tended to have integrated HPV infection and high viral load, compared with HR-HPV DNA-positive/p16 overexpression-negative cases.
Conclusions
LC patients with HPV infection and high levels of p16 expression might have an improved survival outcome; however, it is necessary to recruit additional LC cases with HPV infection to determine the definitive characteristics of HPV-mediated LC and estimate survival outcome. These results may contribute to the development of a useful method for selecting patients with a potentially fair response to treatment and ensure laryngeal preservation.
Head & Neck Pathology, 5(2):108–116.
Masand RP, El-Mofty SK, Ma XJ, Luo Y, Flanagan JJ, Lewis JS Jr (2011).
PMID: 21305368 | DOI: 10.1007/s12105-011-0245-3.
JAAD Case Reports 1.4 (2015): 196-199.
Chen CH, Wu YY, Kuo KT, Liau JY, Liang CW.
PMID: http
Cell reports
2021 May 18
Cheung, VC;Peng, CY;Marinić, M;Sakabe, NJ;Aneas, I;Lynch, VJ;Ober, C;Nobrega, MA;Kessler, JA;
PMID: 34010658 | DOI: 10.1016/j.celrep.2021.109138
Mod Pathol. 2012 Sep;25(9):1212-20.
Lewis JS Jr1, Chernock RD, Ma XJ, Flanagan JJ, Luo Y, Gao G, Wang X, El-Mofty SK (2012)
PMID: 22596101doi
Nature
2017 Aug 16
Sigal M, Logan CY, Kapalczynska M, Mollenkopf HJ, Berger H, Wiedenmann B, Nusse R, Amieva MR, Meyer TF.
PMID: 28813421 | DOI: 10.1038/nature23642
The constant regeneration of stomach epithelium is driven by long-lived stem cells, but the mechanism that regulates their turnover is not well understood. We have recently found that the gastric pathogen Helicobacter pylori can activate gastric stem cells and increase epithelial turnover, while Wnt signalling is known to be important for stem cell identity and epithelial regeneration in several tissues. Here we find that antral Wnt signalling, marked by the classic Wnt target gene Axin2, is limited to the base and lower isthmus of gastric glands, where the stem cells reside. Axin2 is expressed by Lgr5+ cells, as well as adjacent, highly proliferative Lgr5- cells that are able to repopulate entire glands, including the base, upon depletion of the Lgr5+ population. Expression of both Axin2 and Lgr5 requires stroma-derived R-spondin 3 produced by gastric myofibroblasts proximal to the stem cell compartment. Exogenous R-spondin administration expands and accelerates proliferation of Axin2+/Lgr5- but not Lgr5+ cells. Consistent with these observations, H. pylori infection increases stromal R-spondin 3 expression and expands the Axin2+ cell pool to cause hyperproliferation and gland hyperplasia. The ability of stromal niche cells to control and adapt epithelial stem cell dynamics constitutes a sophisticated mechanism that orchestrates epithelial regeneration and maintenance of tissue integrity.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com