Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (120)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • (-) Remove Wnt5a filter Wnt5a (31)
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (34) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (10) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (8) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (6) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (4) Apply RNAscope 2.5 VS Assay filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (79) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Neuroscience (13) Apply Neuroscience filter
  • Stem Cells (7) Apply Stem Cells filter
  • Development (6) Apply Development filter
  • Developmental (5) Apply Developmental filter
  • Other (5) Apply Other filter
  • Inflammation (4) Apply Inflammation filter
  • Chronic Itch (2) Apply Chronic Itch filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Itch (2) Apply Itch filter
  • Allergy (1) Apply Allergy filter
  • Behavorial (1) Apply Behavorial filter
  • Bone (1) Apply Bone filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Endocrine (1) Apply Endocrine filter
  • Evolution (1) Apply Evolution filter
  • Lung (1) Apply Lung filter
  • Other: Methods (1) Apply Other: Methods filter
  • Pain (1) Apply Pain filter
  • Protocols (1) Apply Protocols filter
  • Reproduction (1) Apply Reproduction filter
  • Traumatic brain injury (1) Apply Traumatic brain injury filter

Category

  • Publications (120) Apply Publications filter
p16 immunohistochemistry in oropharyngeal squamous cell carcinoma: a comparison of antibody clones using patient outcomes and high-risk human papillomavirus RNA status.

Mod Pathol.

2017 Jun 16

Shelton J, Purgina BM, Cipriani NA, Dupont WD, Plummer D, Lewis JS Jr.
PMID: 28621317 | DOI: 10.1038/modpathol.2017.31

High-risk human papillomavirus (HPV)-related oropharyngeal squamous cell carcinomas have a more favorable prognosis than HPV-negative ones. p16 immunohistochemistry has been recommended as a prognostic test in clinical practice. Several p16 antibodies are available, and their performance has not been directly compared. We evaluated three commercially available p16 antibody clones (E6H4, JC8 and G175-405) utilizing 199 cases of oropharyngeal squamous cell carcinoma from a tissue microarray, read by three pathologists with three different cutoffs for positivity: any staining, >50% and >75%. Positive predictive values for high-risk HPV status by RNA in situ hybridization for the E6H4, JC8 and G175-405 clones were 98%, 100% and 99% at the 75% cutoff, but negative predictive values were much more variable at 86%, 69% and 56%, respectively. These improved using the 50% cutoff, becoming similar for all three antibodies. Intensity varied substantially, with 85% of E6H4, 72% of JC8 and 67% of G175-405 showing strong (3+) intensity. With Kaplan-Meier survival plots at the 75% cutoff, the E6H4 clone showed the largest differential in disease specific and overall survival between p16-positive and -negative results. Decreasing the cutoff to 50% increased correlation with HPV in situ hybridization and improved the survival differential for the JC8 and G175-405 clones without worsening of performance for the E6H4 clone. Interobserver agreement was also assessed by kappa scores and was highest for the E6H4 clone. Overall, these study results show modest but important performance differences between the three different p16 antibody clones, suggesting that the E6H4 clone performs best because of strongest staining intensity, greatest differential in outcomes between positive and negative results, lowest interobserver variability, and lowest background, nonspecific staining. The results also suggest that a 75% cutoff is very functional but that, in this patient population with high HPV incidence, 50% and any staining cutoffs may be more effective, particularly for the non-E6H4 clones.

The role of human papillomavirus in p16 positive oral cancers.

J Oral Pathol Med.

2017 Oct 11

Belobrov S, Cornall AM, Young RJ, Koo K, Angel C, Wiesenfeld D, Rischin D, Garland SM, McCullough M.
PMID: 29024035 | DOI: 0.1111/jop.12649

Abstract

BACKGROUND:

The aim of this study was to identify the presence and frequency of human papillomavirus (HPV) nucleic acid in p16-positive oral squamous cell carcinomas (OSCCs), to assess whether the virus was transcriptionally active and to assess the utility of p16 overexpression as a surrogate marker for HPV in OSCC.

METHODS:

Forty-six OSCC patients treated between 2007 and 2011 with available formalin-fixed paraffin-embedded (FFPE) specimens were included. Twenty-three patients were positive for p16 by immunohistochemistry (IHC) and these were matched with 23 patients with p16-negative tumours. Laser capture microdissection of the FFPE OSCC tissues was undertaken to isolate invasive tumour tissue. DNA was extracted and tested for high-risk HPV types using a PCR-ELISA method based on the L1 SPF10 consensus primers, and a real-time PCR method targeting HPV-16 and HPV-18 E6 region. Genotyping of HPV-positive cases was performed using a reverse line blot hybridization assay (Inno-LiPA). RNAScope® (a chromogenic RNA in situ hybridization assay) was utilized to detect E6/E7 mRNA of known high-risk HPV types for detection of transcriptionally active virus.

RESULTS:

HPV DNA was found in 3 OSCC cases, all of which were p16 IHC-positive. Two cases were genotyped as HPV-16 and one as HPV-33. Only one of the HPV-16 cases was confirmed to harbour transcriptionally active virus via HPV RNA ISH.

CONCLUSION:

We have shown that the presence of transcriptionally active HPV rarely occurs in OSCC and that p16 is not an appropriate surrogate marker for HPV in OSCC cases. We propose that non-viral mechanisms are responsible for the majority of IHC p16 overexpression in OSCC.

Anal verrucous carcinoma is not related to infection with human papillomaviruses and should be distinguished from giant condyloma (Buschke-Löwenstein tumor).

Histopathology.

2016 Dec 24

Zidar N, Langner C, Odar K, Hošnjak L, Kamarádová K, Daum O, Pollheimer MJ, Košorok P, Poljak M.
PMID: 28012208 | DOI: 10.1111/his.13158

AIMS:

Verrucous carcinoma (VC) is a variant of well differentiated squamous cell carcinoma and is in the anal region regarded as synonymous with giant condyloma (Buschke-Löwenstein tumor) (BLT). Etiology, diagnostic criteria and clinical behavior of both lesions are controversial. Recent studies suggest that VC at other sites is not associated with human papillomaviruses (HPV). We hypothesized that anal VC is also not related to HPV, while BLT is a HPV-induced lesion.

METHODS AND RESULTS:

Ten cases of VC and 4 cases of BLT were included. Several techniques were used for HPV detection: in situ hybridization for HPV6, 11, 16 and 18, six different PCR protocols for detection of at least 89 HPV types from Alpha-, Beta-, Gamma- and Mu-PV genera, and in situ hybridization for high risk HPV E6/E7 mRNA. p16 immunohistochemistry and morphometric analysis were also performed. Alpha-, Gamma- and Mu-PVs were not found in any case of VC, while HPV6 was detected in all cases of BLT. p16 overexpression was not present in any of the lesions. Among microscopic features, only the absence of koilocytosis and enlarged spinous cells seem to be useful to distinguish VC from BLT.

CONCLUSIONS:

Our results suggest that anal VC, similarly to VC at other sites, is not associated with HPV infection and must be distinguished from BLT which is associated with low risk HPV. Only with well-set diagnostic criteria will it be possible to ascertain clinical behavior and optimal treatment for both lesions. 

Human Papillomavirus-related Carcinoma with Adenoid Cystic-like Features of the Sinonasal Tract: Clinical and Morphological Characterization of 6 New Cases.

Histopathology.

2016 Dec 30

Andreasen S, Bishop J, Hansen TV, Westra WH, Bilde A, von Buchwald C, Kiss K.
PMID: 28035703 | DOI: 10.1111/his.13162

Human Papillomavirus (HPV) is known as causative for squamous cell carcinoma (SCC) of the oropharynx, but is also not infrequently found in carcinomas of the sinonasal tract. Recently, a subset of these carcinomas was recognized to harbour HPV33 and have a significant morphological overlap with adenoid cystic carcinoma (ACC), a rare and aggressive carcinoma originating in the minor salivary glands. Termed HPV-related carcinoma with ACC-like features, only 9 cases have been reported. To clarify the occurrence of these tumours we screened a large material for presence of HPV-related ACC-like carcinoma. The identified tumours were characterized immunohistochemically and with fluorescence in situ hybridization and clinicopathologic information for all cases is presented.

METHODS AND RESULTS:

Forty-seven candidate cases were screened for presence of HPV. Six cases were identified and genotyped as HPV types 33, 35 and 56. All six cases had areas of dysplastic mucosal lining and showed remarkable heterogeneous morphologies. MYB, MYBL1, and NFIB genes were intact and, interestingly, staining for MYB protein was largely negative in contrast to what was found in ACC. One patient experienced a local recurrence 11 years after initial treatment and the remaining five patients were alive without evidence of disease.

CONCLUSION:

We report six new cases of HPV-related ACC-like carcinoma and found that, although in a small material, the prognosis for these patients seems more favourable than for ACC. For the distinction between ACC and HPV-related ACC-like carcinoma, p16, MYB immunohistochemistry, or investigation of MYB, MYBL1, and NFIB gene status are valuable. This article is protected by copyright. All rights reserved.

Increasing prevalence of human papillomavirus-positive oropharyngeal cancers among older adults.

Cancer.

2018 Apr 30

Windon MJ, D'Souza G, Rettig EM, Westra WH, van Zante A, Wang SJ, Ryan WR, Mydlarz WK, Ha PK, Miles BA, Koch W, Gourin C, Eisele DW, Fakhry C.
PMID: 29710393 | DOI: 10.1002/cncr.31385

Abstract

BACKGROUND:

The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is increasing among older adults. It is unknown whether these trends can be explained by human papillomavirus (HPV) and whether HPV-related tumors remain associated with an improved prognosis among older patients.

METHODS:

In a retrospective study of OPSCCs diagnosed from 1995 to 2013 at 2 National Comprehensive Cancer Network-designated cancer centers, p16 immunohistochemistry and in situ hybridization (ISH) for HPV-16, high-risk DNA, and/or E6/E7 RNA were performed. The median age at diagnosis was compared by p16 and ISH tumor status. Trends in age were analyzed with nonparametric trends. Survival was analyzed with the Kaplan-Meier method and Cox proportional hazards models.

RESULTS:

Among 239 patients, 144 (60%) were p16-positive. During 1998-2013, the median age increased among p16-positive patients (Ptrend = .01) but not among p16-negative patients (Ptrend = .71). The median age of p16-positive patients increased from 53 years (interquartile range [IQR] in 1995-2000, 45-65 years) to 58 years (IQR for 2001-2013, 53-64 years). Among patients ≥ 65 years old, the proportion of OPSCCs that were p16-positive increased from 41% during 1995-2000 to 75% during 2007-2013 (Ptrend = .04). Among all age groups, including older patients, a p16-positive tumor status conferred improved overall survival in comparison with a p16-negative status.

CONCLUSIONS:

The median age at diagnosis for HPV-related OPSCC is increasing as the proportion of OPSCCs caused by HPV rises among older adults. The favorable survival conferred by an HPV-positive tumor status persists in older adults. Cancer 2018. © 2018 American Cancer Society.

Microglia-neuron interactions promote chronic itch via the NLRP3-IL-1β-GRPR axis

Allergy

2023 Mar 06

Liu, X;Wang, Y;Zeng, Y;Wang, D;Wen, Y;Fan, L;He, Y;Zhang, J;Sun, W;Liu, Y;Tao, A;
PMID: 36876522 | DOI: 10.1111/all.15699

Spinal astrocytes contribute to chronic itch via sensitization of itch-specific neurons expressing gastrin-releasing peptide receptor (GRPR). However, whether microglia-neuron interactions contribute to itch remains unclear. In this study, we aimed to explore how microglia interact with GRPR+ neurons and promote chronic itch.RNA sequencing, quantitative real-time PCR, western blot, immunohistochemistry, RNAscope ISH, pharmacologic and genetic approaches were performed to examine the roles of spinal NLRP3 (The NOD-like receptor family, pyrin-containing domain 3) inflammasome activation and IL-1β-IL1R1 signaling in chronic itch. Grpr-eGFP and Grpr KO mice were used to investigate microglia-GRPR+ neuron interactions.We observed NLRP3 inflammasome activation and IL-1β production in spinal microglia under chronic itch conditions. Blockade of microglial activation and the NLRP3/caspase-1/IL-1β axis attenuated chronic itch and neuronal activation. Type 1 IL-1 receptor (IL-1R1) was expressed in GRPR+ neurons, which are essential for the development of chronic itch. Our studies also find that IL-1β+ microglia are localized in close proximity to GRPR+ neurons. Consistently, intrathecal injection of IL1R1 antagonist or exogenous IL-1β indicate that the IL-1β-IL-1R1 signaling pathway enhanced the activation of GRPR+ neurons. Furthermore, our results demonstrate that the microglial NLRP3/caspase-1/IL-1β axis contributes to several different chronic itches triggered by small molecules and protein allergens from the environment and drugs.Our findings reveal a previously unknown mechanism in which microglia enhances the activation of GRPR+ neurons through the NLRP3/caspase-1/IL-1β/IL1R1 axis. These results will provide new insights into the pathophysiology of pruritus and novel therapeutic strategies for patients with chronic itch.
Penile Squamous Cell Carcinoma Exclusive to the Shaft, with a Proposal for a Novel Staging System

Human pathology

2022 Dec 22

Tekin, B;Guo, R;Cheville, JC;Canete-Portillo, S;Sanchez, DF;Fernandez-Nestosa, MJ;Dasari, S;Menon, S;Herrera Hernandez, L;Jimenez, RE;Erickson, LA;Cubilla, AL;Gupta, S;
PMID: 36566905 | DOI: 10.1016/j.humpath.2022.12.012

Penile squamous cell carcinomas (SCC) originating in the shaft are rare. pT1/pT2 categories in the American Joint Committee on Cancer (AJCC) staging manual (8th edition) are poorly defined for SCCs arising in the dorsal shaft as anatomic structures differ between the glans and dorsal shaft (corpus spongiosum vs dartos/Buck's fascia, respectively). We reviewed six penile SCC cases exclusive to the shaft, an unusual presentation, identified amongst 120 patients treated with penectomy. We propose a novel pT staging system for dorsal shaft tumors tailored to its anatomic landmarks, where tumors extending to Buck's fascia are considered pT2 instead of pT1. The mean age at penectomy, average duration of follow-up, and mean depth of invasion were 64 years, 45 months, and 9.8 mm, respectively. Four cases were moderately differentiated, HPV-negative SCCs of the usual type and two cases were HPV-positive basaloid and warty-basaloid carcinomas. Three cases had nodal or distant metastasis at the time of penectomy, and histologic assessment in these cases showed invasion into the Buck's fascia or deeper. According to the current AJCC system, only one of these three cases would be staged as ≥pT2. In contrast, all three metastatic tumors would be staged as ≥pT2 in the proposed model. At last follow-up, one patient died of disease-related complications. Based on this limited series, the proposed staging model appears to suggest better patient stratification for pT1/pT2 stages. This model incorporates Buck's fascia, which has been postulated as a pathway of tumor infiltration. Additional studies are needed to validate this model.
Validation of a novel diagnostic standard in HPV-positive oropharyngeal squamous cell carcinoma.

British journal of cancer, 108(6):1332–1339.

Schache AG, Liloglou T, Risk JM, Jones TM, Ma XJ, Wang H, Bui S, Luo Y, Sloan P, Shaw RJ, Robinson M (2013).
PMID: 23412100 | DOI: 10.1038/bjc.2013.63.

BACKGROUND: Human papillomavirus (HPV) testing in oropharyngeal squamous cell carcinoma (OPSCC) is now advocated. Demonstration of transcriptionally active high-risk HPV (HR-HPV) in fresh tumour tissue is considered to be the analytical 'gold standard'. Clinical testing has focused on formalin-fixed paraffin-embedded (FFPE) tissue at the expense of sensitivity and specificity. Recently, a novel RNA in situ hybridisation test (RNAscope) has been developed for the detection of HR-HPV in FFPE tissue; however, validation against the 'gold standard' has not been reported. METHODS: A tissue microarray comprising FFPE cores from 79 OPSCC was tested using HR-HPV RNAscope. Analytical accuracy and prognostic capacity were established by comparison with the reference test; qRT-PCR for HR-HPV on matched fresh-frozen samples. RESULTS: High-risk HPV RNAscope had a sensitivity and specificity of 97 and 93%, respectively, against the reference test. Kaplan-Meier estimates of disease-specific survival (DSS, P=0.001) and overall survival (OS, P<0.001) by RNAscope were similar to the reference test (DSS, P=0.003, OS, P<0.001) and at least, not inferior to p16 immunohistochemistry +/- HR-HPV DNA-based tests. CONCLUSION: HR-HPV RNAscope demonstrates excellent analytical and prognostic performance against the 'gold standard'. These data suggest that the test could be developed to provide the 'clinical standard' for assigning a diagnosis of HPV-related OPSCC.
Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease

Cell

2018 Sep 27

Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, Sharma E, Wills Q, Bowden R, Richter FC, Ahern D, Puri KD, Henault J, Gervais F, Koohy H, Simmons A.
PMID: - | DOI: 10.1016/j.cell.2018.08.067

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cellfunction. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.

Deciphering the origins and fates of steroidogenic lineages in the mouse testis

Cell reports

2022 Jun 14

Ademi, H;Djari, C;Mayère, C;Neirijnck, Y;Sararols, P;Rands, CM;Stévant, I;Conne, B;Nef, S;
PMID: 35705036 | DOI: 10.1016/j.celrep.2022.110935

Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis.
A genetic map of the mouse dorsal vagal complex and its role in obesity

Nature metabolism

2021 Apr 01

Ludwig, MQ;Cheng, W;Gordian, D;Lee, J;Paulsen, SJ;Hansen, SN;Egerod, KL;Barkholt, P;Rhodes, CJ;Secher, A;Knudsen, LB;Pyke, C;Myers, MG;Pers, TH;
PMID: 33767443 | DOI: 10.1038/s42255-021-00363-1

The brainstem dorsal vagal complex (DVC) is known to regulate energy balance and is the target of appetite-suppressing hormones, such as glucagon-like peptide 1 (GLP-1). Here we provide a comprehensive genetic map of the DVC and identify neuronal populations that control feeding. Combining bulk and single-nucleus gene expression and chromatin profiling of DVC cells, we reveal 25 neuronal populations with unique transcriptional and chromatin accessibility landscapes and peptide receptor expression profiles. GLP-1 receptor (GLP-1R) agonist administration induces gene expression alterations specific to two distinct sets of Glp1r neurons-one population in the area postrema and one in the nucleus of the solitary tract that also expresses calcitonin receptor (Calcr). Transcripts and regions of accessible chromatin near obesity-associated genetic variants are enriched in the area postrema and the nucleus of the solitary tract neurons that express Glp1r and/or Calcr, and activating several of these neuronal populations decreases feeding in rodents. Thus, DVC neuronal populations associated with obesity predisposition suppress feeding and may represent therapeutic targets for obesity.
The peptidergic control circuit for sighing.

Nature.

2016 Feb 08

Li P, Janczewski WA, Yackle K, Kam K, Pagliardini S, Krasnow MA, Feldman JL.
PMID: 26855425 | DOI: 10.1038/nature16964.

Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.

Pages

  • « first
  • ‹ previous
  • …
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?