ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature communications
2021 Jul 06
Quijada, P;Trembley, MA;Misra, A;Myers, JA;Baker, CD;Pérez-Hernández, M;Myers, JR;Dirkx, RA;Cohen, ED;Delmar, M;Ashton, JM;Small, EM;
PMID: 34230480 | DOI: 10.1038/s41467-021-24414-z
Nature
2021 Mar 31
Chen, J;Markowitz, JE;Lilascharoen, V;Taylor, S;Sheurpukdi, P;Keller, JA;Jensen, JR;Lim, BK;Datta, SR;Stowers, L;
PMID: 33790464 | DOI: 10.1038/s41586-021-03403-8
Biopreservation and biobanking
2022 Jun 30
Higgs, EF;Flood, BA;Pyzer, AR;Rouhani, SJ;Trujillo, JA;Gajewski, TF;
PMID: 35771982 | DOI: 10.1089/bio.2021.0169
Placenta
2022 May 01
Ward, JD;Cornaby, C;Kato, T;Gilmore, RC;Bunch, D;Miller, MB;Boucher, RC;Schmitz, JL;Askin, FA;Scanga, LR;
PMID: 35512490 | DOI: 10.1016/j.placenta.2022.04.006
Gastroenterology Clinics of North America
2022 Dec 01
Meringer, H;Wang, A;Mehandru, S;
| DOI: 10.1016/j.gtc.2022.12.001
Cell
2019 Apr 22
Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y.
PMID: 31031008 | DOI: 10.1016/j.cell.2019.03.041
The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.
Vaccines
2022 Jul 09
Mucker, EM;Brocato, RL;Principe, LM;Kim, RK;Zeng, X;Smith, JM;Kwilas, SA;Kim, S;Horton, H;Caproni, L;Hooper, JW;
PMID: 35891268 | DOI: 10.3390/vaccines10071104
Diabetes.
2018 Jun 27
Xin Y, Gutierrez GD, Okamoto H, Kim J, Lee AH, Adler C, Ni M, Yancopoulos GD, Murphy AJ, Gromada J.
PMID: 29950394 | DOI: 10.2337/db18-0365
Proinsulin is a misfolding-prone protein making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic β-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that β-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single non-diabetic human β-cells detected by large-scale RNA sequencing. We identified major states with 1) low UPR and low insulin gene expression, 2) low UPR and high insulin gene expression or 3) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human β-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human β-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.
Cell.
2016 Sep 22
Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA.
PMID: 27616062 | DOI: 10.1016/j.cell.2016.08.028
Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals.
Neuron.
2017 Jan 31
François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer G.
PMID: 28162807 | DOI: 10.1016/j.neuron.2017.01.008
Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds.
iScience
2023 May 19
Chen, DY;Turcinovic, J;Feng, S;Kenney, DJ;Chin, CV;Choudhary, MC;Conway, HL;Semaan, M;Close, BJ;Tavares, AH;Seitz, S;Khan, N;Kapell, S;Crossland, NA;Li, JZ;Douam, F;Baker, SC;Connor, JH;Saeed, M;
PMID: 37095858 | DOI: 10.1016/j.isci.2023.106634
PloS one
2022 Dec 19
Mengaziol, J;Dunn, AD;Salimando, G;Wooldridge, L;Crues-Muncunill, J;Eacret, D;Chen, C;Bland, K;Liu-Chen, LY;Ehrlich, ME;Corder, G;Blendy, JA;
PMID: 36534642 | DOI: 10.1371/journal.pone.0270317
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com