Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (188)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • (-) Remove SARS-CoV-2 filter SARS-CoV-2 (136)
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • (-) Remove egfp filter egfp (46)
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (44) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (30) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (28) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (27) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (15) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (6) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (6) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (4) Apply TBD filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter

Research area

  • Covid (113) Apply Covid filter
  • Infectious (39) Apply Infectious filter
  • Neuroscience (37) Apply Neuroscience filter
  • Inflammation (12) Apply Inflammation filter
  • Immunotherapy (8) Apply Immunotherapy filter
  • Reproduction (7) Apply Reproduction filter
  • Other (6) Apply Other filter
  • Development (4) Apply Development filter
  • Developmental (4) Apply Developmental filter
  • Infectious Disease (4) Apply Infectious Disease filter
  • Vaccines (4) Apply Vaccines filter
  • Cancer (3) Apply Cancer filter
  • Vaccine (3) Apply Vaccine filter
  • CGT (2) Apply CGT filter
  • Covid-19 (2) Apply Covid-19 filter
  • Heart Disease (2) Apply Heart Disease filter
  • Long Covid (2) Apply Long Covid filter
  • Lung (2) Apply Lung filter
  • Neuroinflammation (2) Apply Neuroinflammation filter
  • Other: Methods (2) Apply Other: Methods filter
  • Sex Differences (2) Apply Sex Differences filter
  • Single Cell (2) Apply Single Cell filter
  • Stem Cells (2) Apply Stem Cells filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • COVID-19-associated pulmonary aspergillosis (1) Apply COVID-19-associated pulmonary aspergillosis filter
  • diabetes (1) Apply diabetes filter
  • emotional valence (1) Apply emotional valence filter
  • Heart (1) Apply Heart filter
  • Immunothearpy (1) Apply Immunothearpy filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectiouse Disease: Flu (1) Apply Infectiouse Disease: Flu filter
  • Kidney (1) Apply Kidney filter
  • Locomotion (1) Apply Locomotion filter
  • Long-Covid (1) Apply Long-Covid filter
  • Memory (1) Apply Memory filter
  • Metabolism (1) Apply Metabolism filter
  • Nueroscience (1) Apply Nueroscience filter
  • Organ transplant (1) Apply Organ transplant filter
  • Other: Opioid use disorder (1) Apply Other: Opioid use disorder filter
  • Pain (1) Apply Pain filter
  • pharmacotherapy (1) Apply pharmacotherapy filter
  • Respiratory Disease (1) Apply Respiratory Disease filter
  • Sleep (1) Apply Sleep filter
  • Stem cell (1) Apply Stem cell filter
  • Stress (1) Apply Stress filter
  • Vaccine-associated enhanced respiratory disease (1) Apply Vaccine-associated enhanced respiratory disease filter
  • Vaccines Associated Hepatitis (1) Apply Vaccines Associated Hepatitis filter

Category

  • Publications (188) Apply Publications filter
A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants

bioRxiv : the preprint server for biology

2022 Feb 01

Jiang, L;Driedonks, TAP;Jong, WSP;Dhakal, S;van den Berg van Saparoea, HB;Sitaras, I;Zhou, R;Caputo, C;Littlefield, K;Lowman, M;Chen, M;Lima, G;Gololobova, O;Smith, B;Mahairaki, V;Richardson, MR;Mulka, KR;Lane, AP;Klein, SL;Pekosz, A;Brayton, CF;Mankowski, JL;Luirink, J;Villano, JS;Witwer, KW;
PMID: 35132418 | DOI: 10.1101/2021.06.28.450181

Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.
Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos

BMC Biol. 2014 Aug 15;12(1):55.

Gross-Thebing T, Paksa A, Raz E.
PMID: 25124741

Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos
Neurovascular injury with complement activation and inflammation in COVID-19

Brain : a journal of neurology

2022 Jul 29

Lee, MH;Perl, DP;Steiner, J;Pasternack, N;Li, W;Maric, D;Safavi, F;Horkayne-Szakaly, I;Jones, R;Stram, MN;Moncur, JT;Hefti, M;Folkerth, RD;Nath, A;
PMID: 35788639 | DOI: 10.1093/brain/awac151

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.
SARS-CoV2 infects pancreatic beta cells in vivo and induces cellular and subcellular disruptions that reflect beta cell dysfunction

Research square

2021 Jul 20

Millette, K;Cuala, J;Wang, P;Marks, C;Woo, V;Hayun, M;Kang, H;Martin, M;Dhawan, S;Chao, L;Fraser, S;Junge, J;Lewis, M;Georgia, S;
PMID: 34312617 | DOI: 10.21203/rs.3.rs-592374/v1

Increasing evidence of new-onset diabetes during the COVID19 pandemic indicates that the SARS-CoV2 virus may drive beta-cell dysfunction leading to diabetes, but it is unclear if it is a primary or secondary effect. Here, we present evidence of SARS-CoV-2 infection of pancreatic beta cells in vivo using a robust and reproducible non-human primates model of mild to moderate COVID19 pathogenesis. Pancreas from SARS-CoV-2 infected subjects were positive for the SARS-CoV2 spike protein by immunohistochemistry and structures indicative of viral replication were evident by electron microscopy. Total beta cell area was decreased in SARS-CoV-2-infected pancreas, attributable to beta cell atrophy. Beta cell granularity was decreased. These histologic phenotypes persisted beyond the duration of the clinical disease course. Detailed electron microscopy of SARS-CoV-2 infected beta-cells revealed ultrastructural hallmarks of beta cell stress that are seen in islets of patients with Type 2 diabetes, including disrupted mitochondria and dilated endoplasmic reticulum. To assess the metabolic status of beta cells from SARS-CoV-2-infected subjects, we used fluorescence life-time imaging to measure the ratio of free and bound NADH as a surrogate of glycolytic and oxidative metabolism. We report an increase in free NADH levels, suggesting that beta cells from SARS-CoV-2-infected subjects adopt a more glycolytic metabolic profile. Taken together, we conclude that SARS-CoV-2 infection induces beta cell stress that may compromise beta-cell function beyond the duration of the disease course. This raises the possibility that the beta cell stress and injury may have clinical implications of the long-term future health of patients that have recovered from COVID19.
Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear.

Mol Psychiatry.

2017 Apr 25

Asok A, Draper A, Hoffman AF, Schulkin J, Lupica CR, Rosen JB.
PMID: 28439099 | DOI: 10.1038/mp.2017.79

The lateral central nucleus of the amygdala (CeAL) and the dorsolateral bed nucleus of the stria terminalis (BNSTDL) coordinate the expression of shorter- and longer-lasting fears, respectively. Less is known about how these structures communicate with each other during fear acquisition. One pathway, from the CeAL to the BNSTDL, is thought to communicate via corticotropin-releasing factor (CRF), but studies have yet to examine its function in fear learning and memory. Thus, we developed an adeno-associated viral-based strategy to selectively target CRF neurons with the optogenetic silencer archaerhodopsin tp009 (CRF-ArchT) to examine the role of CeAL CRF neurons and projections to the BNSTDL during the acquisition of contextual fear. Expression of our CRF-ArchT vector injected into the amygdala was restricted to CeAL CRF neurons. Furthermore, CRF axonal projections from the CeAL clustered around BNSTDL CRF cells. Optogenetic silencing of CeAL CRF neurons during contextual fear acquisition disrupted retention test freezing 24 h later, but only at later time points (>6 min) during testing. Silencing CeAL CRF projections in the BNSTDL during contextual fear acquisition produced a similar effect. Baseline contextual freezing, the rate of fear acquisition, freezing in an alternate context after conditioning and responsivity to foot shock were unaffected by optogenetic silencing. Our results highlight how CeAL CRF neurons and projections to the BNSTDL consolidate longer-lasting components of a fear memory. Our findings have implications for understanding how discrete amygdalar CRF pathways modulate longer-lasting fear in anxiety- and trauma-related disorders.

COVID-19-associated cardiac pathology at post-mortem evaluation: A Collaborative systematic Review

Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases

2022 Mar 23

Almamlouk, R;Kashour, T;Obeidat, S;Bois, MC;Maleszewski, JJ;Omrani, OA;Tleyjeh, R;Berbari, E;Chakhachiro, Z;Zein-Sabatto, B;Gerberi, D;Tleyjeh, IM;Cardiac Autopsy in COVID-19 Study Group, ;
PMID: 35339672 | DOI: 10.1016/j.cmi.2022.03.021

Many post-mortem studies addressing the cardiovascular effects of COVID-19 provided valuable information but were limited by their small sample size.The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies.We searched online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus and Web of Science for the concepts of autopsy or histopathology combined with COVID-19 published between database inception to February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory.Articles were considered eligible for inclusion if they reported human post-mortem cardiovascular findings among individuals with confirmed SARS-CoV-2 infection.Studies were individually assessed for risk of selection bias, detection bias and reporting bias.Median prevalence of different autopsy findings with associated interquartile ranges.This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median=100.0%, IQR 20-100%, number of studies=9, number of patients=64) and myocardial edema (median=55.5%, IQR 19.5-92.5%, number of studies=4, number of patients=46). Median reported prevalence's of extensive, focal active and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median=69.0%, IQR 46.8-92.1%) and fibrosis (median=35.0%, IQR 35.0-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%).Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19, SARS-CoV-2 cardiac tropism, and the low prevalence of myocarditis in COVID-19 disease.
Fluoxetine plus lithium for treatment of mental health impairment in Long Covid

Qeios

2022 Sep 21

Fessel, J;
| DOI: 10.32388/cf8mip

Mental disability is a serious and often disabling symptom of Long Covid, for which currently there is no recommendable pharmacotherapy for those patients whose response to psychotherapy is suboptimal. Treatment could be formulated by using drugs that address the brain cell-types that have been demonstrated as dominantly affected in Long Covid. Those cell-types are astrocytes, oligodendrocytes, endothelial cells/pericytes, and microglia. Lithium and fluoxetine each address all of those four cell-types. They should be administered in combination for both depth of benefit and reduction of dosages. Low dosage of each is likely to be well-tolerated and to cause neither adverse events (AE) nor serious adverse events (SAE).
Non-Productive Infection of Glial Cells with SARS-CoV-2 in Hamster Organotypic Cerebellar Slice Cultures

Viruses

2022 Jun 03

Lamoureux, L;Sajesh, B;Slota, JA;Medina, SJ;Mayor, M;Frost, KL;Warner, B;Manguiat, K;Wood, H;Kobasa, D;Booth, SA;
PMID: 35746689 | DOI: 10.3390/v14061218

The numerous neurological syndromes associated with COVID-19 implicate an effect of viral pathogenesis on neuronal function, yet reports of direct SARS-CoV-2 infection in the brain are conflicting. We used a well-established organotypic brain slice culture to determine the permissivity of hamster brain tissues to SARS-CoV-2 infection. We found levels of live virus waned after inoculation and observed no evidence of cell-to-cell spread, indicating that SARS-CoV-2 infection was non-productive. Nonetheless, we identified a small number of infected cells with glial phenotypes; however, no evidence of viral infection or replication was observed in neurons. Our data corroborate several clinical studies that have assessed patients with COVID-19 and their association with neurological involvement.
SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery

Science Translational Medicine

2022 Jun 07

Frere, J;Serafini, R;Pryce, K;Zazhytska, M;Oishi, K;Golynker, I;Panis, M;Zimering, J;Horiuchi, S;Hoagland, D;Møller, R;Ruiz, A;Kodra, A;Overdevest, J;Canoll, P;Borczuk, A;Chandar, V;Bram, Y;Schwartz, R;Lomvardas, S;Zachariou, V;tenOever, B;
| DOI: 10.1126/scitranslmed.abq3059

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely impacted the olfactory bulb (OB) and epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month post viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.
Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration.

Stem Cell Reports.

2017 Mar 30

Wilk K, Yeh SA, Mortensen LJ, Ghaffarigarakani S, Lombardo CM, Bassir SH, Aldawood ZA, Lin CP, Intini G.
PMID: 28366454 | DOI: 10.1016/j.stemcr.2017.03.002

Postnatal cells expressing PRX1 (pnPRX1+) present with qualities of skeletal stem cells are identified in the calvaria and axial skeleton. Here we characterize the location and functional capacity of the calvarial pnPRX1+ cells. We found that pnPRX1+ reside exclusively in the calvarial suture niche and decrease in number with age. They are distinct from preosteoblasts and osteoblasts of the sutures, respond to WNT signaling in vitro and in vivo by differentiating into osteoblasts and upon heterotopic transplantation, are able to regenerate bone. Diphtheria toxin A (DTA)-mediated lineage ablation of pnPRX1+ cells and suturectomy perturb regeneration of calvarial bone defects and confirm that pnPRX1+ cells of the sutures are required for bone regeneration. Orthotopic transplantation of sutures with traceable pnPRX1+ cells into wild-type animals show that pnPRX1+ cells of the suture contribute to calvarial bone defect regeneration. DTA-mediated lineage ablation of pnPRX1+ does not however interfere with calvarial development.

Itch suppression in mice and dogs by modulation of spinal α2 and α3GABAA receptors

Nat Commun.

2018 Aug 13

Ralvenius WT, Neumann E, Pagani M, Acuña MA, Wildner H, Benke D, Fischer N, Rostaher A, Schwager S, Detmar M, Frauenknecht K, Aguzzi A, Hubbs JL, Rudolph U, Favrot C, Zeilhofer HU.
PMID: 30104684 | DOI: 10.1038/s41467-018-05709-0

Chronic itch is a highly debilitating condition affecting about 10% of the general population. The relay of itch signals is under tight control by inhibitory circuits of the spinal dorsal horn, which may offer a hitherto unexploited therapeutic opportunity. Here, we found that specific pharmacological targeting of inhibitory α2 and α3GABAA receptors reduces acute histaminergic and non-histaminergic itch in mice. Systemic treatment with an α2/α3GABAA receptor selective modulator alleviates also chronic itch in a mouse model of atopic dermatitis and in dogs sensitized to house dust mites, without inducing sedation, motor dysfunction, or loss of antipruritic activity after prolonged treatment. Transsynaptic circuit tracing, immunofluorescence, and electrophysiological experiments identify spinal α2 and α3GABAA receptors as likely molecular targets underlying the antipruritic effect. Our results indicate that drugs targeting α2 and α3GABAA receptors are well-suited to alleviate itch, including non-histaminergic chronic itch for which currently no approved treatment exists.

Functional Access to Neuron Subclasses in Rodent and Primate Forebrain.

Cell Rep.

2019 Mar 05

Mehta P, Kreeger L, Wylie DC, Pattadkal JJ, Lusignan T, Davis MJ, Turi GF, Li WK, Whitmire MP, Chen Y, Kajs BL, Seidemann E, Priebe NJ, Losonczy A, Zemelman BV.
PMID: 30840900 | DOI: 10.1016/j.celrep.2019.02.011

Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.

Pages

  • « first
  • ‹ previous
  • …
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?