Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (142)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • (-) Remove Slc17a7 filter Slc17a7 (52)
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (30) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (23) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (17) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (7) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (5) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (4) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (81) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (62) Apply Infectious Disease filter
  • Neuroscience (49) Apply Neuroscience filter
  • Inflammation (4) Apply Inflammation filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • behavioral (2) Apply behavioral filter
  • Other: Methods (2) Apply Other: Methods filter
  • Alcohol Use (1) Apply Alcohol Use filter
  • Allergy Response (1) Apply Allergy Response filter
  • Anesthesia (1) Apply Anesthesia filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorder (1) Apply Autism spectrum disorder filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • CGT (1) Apply CGT filter
  • Chronic Pain (1) Apply Chronic Pain filter
  • Depression (1) Apply Depression filter
  • Development (1) Apply Development filter
  • Epilepsy (1) Apply Epilepsy filter
  • Fragile X Syndrome (1) Apply Fragile X Syndrome filter
  • Infectious (1) Apply Infectious filter
  • Lung (1) Apply Lung filter
  • MicroRNAs (1) Apply MicroRNAs filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Immunology (1) Apply Other: Immunology filter
  • Protocols (1) Apply Protocols filter
  • Sleep (1) Apply Sleep filter
  • Stress (1) Apply Stress filter
  • Technique (1) Apply Technique filter

Category

  • Publications (142) Apply Publications filter
mGlu1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits

Cell reports

2021 Nov 02

Maksymetz, J;Byun, NE;Luessen, DJ;Li, B;Barry, RL;Gore, JC;Niswender, CM;Lindsley, CW;Joffe, ME;Conn, PJ;
PMID: 34731619 | DOI: 10.1016/j.celrep.2021.109950

Evidence for prefrontal cortical (PFC) GABAergic dysfunction is one of the most consistent findings in schizophrenia and may contribute to cognitive deficits. Recent studies suggest that the mGlu1 subtype of metabotropic glutamate receptor regulates cortical inhibition; however, understanding the mechanisms through which mGlu1 positive allosteric modulators (PAMs) regulate PFC microcircuit function and cognition is essential for advancing these potential therapeutics toward the clinic. We report a series of electrophysiology, optogenetic, pharmacological magnetic resonance imaging, and animal behavior studies demonstrating that activation of mGlu1 receptors increases inhibitory transmission in the prelimbic PFC by selective excitation of somatostatin-expressing interneurons (SST-INs). An mGlu1 PAM reverses cortical hyperactivity and concomitant cognitive deficits induced by N-methyl-d-aspartate (NMDA) receptor antagonists. Using in vivo optogenetics, we show that prelimbic SST-INs are necessary for mGlu1 PAM efficacy. Collectively, these findings suggest that mGlu1 PAMs could reverse cortical GABAergic deficits and exhibit efficacy in treating cognitive dysfunction in schizophrenia.
Spatially patterned excitatory neuron subtypes and projections of the claustrum

eLife

2021 Aug 16

Erwin, SR;Bristow, BN;Sullivan, KE;Kendrick, RM;Marriott, B;Wang, L;Clements, J;Lemire, AL;Jackson, J;Cembrowski, MS;
PMID: 34397382 | DOI: 10.7554/eLife.68967

The claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions. Using single-cell RNA-sequencing, we found that the claustrum comprises two excitatory neuron subtypes that are differentiable from the surrounding cortex. Multicolor retrograde tracing in conjunction with 12-channel multiplexed in situ hybridization revealed a core-shell spatial arrangement of these subtypes, as well as differential downstream targets. Thus, the claustrum comprises excitatory neuron subtypes with distinct molecular and projection properties, whose spatial patterns reflect the narrower and broader claustral extents debated in previous research. This subtype-specific heterogeneity likely shapes the functional complexity of the claustrum.
928 A translational approach to catalog pancreatic cancer heterogeneity using spatial genomics in large patient cohorts for target validation and rational combination selection

Journal for ImmunoTherapy of Cancer

2021 Nov 01

Jabado, O;Fan, L;Souza, P;Harris, A;Chaparro, A;Qutaish, M;Si, H;Dannenberg, J;Sasser, K;Couto, S;Fereshteh, M;
| DOI: 10.1136/jitc-2021-sitc2021.928

BackgroundPancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with short overall survival; the standard of care (SoC) is chemotherapy. Immunotherapies in development aim to remodel the stroma by depleting immunosuppressive cell types or using T-cell redirection to kill tumor cells. To date, none of these methods have improved overall survival beyond SoC. Next generation immunotherapies that employ histopathology and molecular subtyping1 for target and patient selection may succeed. Here we leverage a spatial transcriptomics platform (Nanostring Digital Spatial Profiling, DSP) to reveal molecular signaling in tumoral and stromal cells in 57 PDAC patients using tumor microarrays (TMAs). This approach is rapid and clinically relevant as molecular and histology data can be easily bridged.MethodsTMAs generated from surgical resection tissue were commercially sourced. DSP was performed using the CTA RNA panel (1,800 target genes) using PanCK fluorescence for tumor/stroma segmentation. In parallel, slides were chromogenically stained for T-cells (CD3) and macrophages (CD68/CD163). Differential gene expression, gene signature and gene co-expression network analysis was performed using linear models in R.2 3ResultsDifferential gene expression analysis and correlation to IHC confirmed the DSP platform successfully profiled tumor and stromal compartments (figure 1). Immune cell signatures4 and pathway analysis revealed a heterogenous stromal environment. Using a fibroblast gene signature derived from single-cell RNAseq5 we found fibroblast density was positively correlated to PDGFR signaling and MHC-II expression but negatively correlated to B, CD4+ T and neutrophil cell levels (figure 2a). This finding supports the idea that atypical antigen presentation in cancer associated fibroblasts (CAFs) may be exploitable for immunotherapies.6 We constructed a co-expression network from in-situ stromal gene expression and used it to identify receptors coordinately expressed with the immunosuppressive macrophage marker CSF1R as a bispecific antibody partner (figure 2b).7 Classical macrophage markers were identified but also receptors with lesser-known functions in macrophages (TIM3/HAVCR2, FPR3, MS4A6A, LILRB4). Surveying target pairs in this method allows rapid, patient-specific confirmation in serial TMA sections with singleplex IHC or RNAscope.Abstact 928 Figure 1Segmentation strategy and validation of DSP (A) PanCK, CD68 and CD3 staining from two representative tumor cores; (B, C) correlation of gene transcripts in stroma to cell counts from chromogenic staining; (D) heatmap of selected genes differentially expressed in tumor and stroma (n=57 patients).Abstract 928 Figure 2Exploration of the stromal compartment in PDAC TMAs. (A) Heatmap of selected cell type and gene signatures from gene expression in the stroma, color represents single sample enrichment score using GSVA method; (B) a gene co-expression subnetwork in the stroma centered on CSF1R, edge thickness represents strength of correlation, green nodes have evidence for cell surface expression based on proteomic profiling.7ConclusionsIn this study we were able to recapitulate known PDAC biology using very small samples of primary tumors. The combination of TMAs and DSP enables a rapid validation of targets and hypothesis generation for bispecific parings. Further analysis of untreated (n=14) and post-adjuvant chemotherapy (n=26) patients using RNA DSP, IHC and bulk RNAseq is under way. Results from this cohort will enable an integrated histopathology and molecular approach to developing next-generation immunotherapies.ReferencesCollisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2019 April;16(4):207-220.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research 43(7):e47.Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics 14,7.Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017 January 3;18(1):248-262.Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jané-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016 April 8;352(6282):189-96.Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 2019 August;9(8):1102-1123. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Härtlová A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B. A mass spectrometric-derived cell surface protein atlas. PLoS One 2015 April 20;10(3):e0121314.Ethics ApprovalSpecimens were harvested from unused tissue after a surgical tumor resection procedure. A discrete legal consent form from both hospital and individuals was obtained by the commercial tissue vendor BioMax US for all samples analyzed in this abstract. All human tissues are collected under HIPPA approved protocols.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.
Diagnosis of HPV-driven head and neck cancer with a single test in routine clinical practice.

Mod Pathol.

2015 Sep 25

Mirghani H, Casiraghi O, Amen F, He M, Ma XJ, Saulnier P, Lacroix L, Drusch F, Ben Lakdhar A, Saint Guily JL, Badoual C, Scoazec JY, Vielh P.
PMID: 26403782 | DOI: 10.1038/modpathol.2015.113

Abstract

Accurate screening of HPV-driven head and neck squamous cell carcinoma is a critical issue. Although there are commercial direct and indirect assays for HPV-related head and neck squamous cell carcinoma, none are ideal. Recently, a novel RNA in situ hybridization test (the RNAscope HPV-test) has been developed for the detection of high-risk HPV E6/E7 mRNA in formalin-fixed paraffin-embedded tissue. However, validation of this assay against the 'gold standard' (identification of high-risk HPV E6/E7 mRNA in fresh-frozen tissue by quantitative real-time (qRT)-PCR) has only been reported by one team. Formalin-fixed paraffin-embedded samples from 50 patients with tonsil or tongue base carcinoma were tested using the RNAscope HPV-test, p16 immunohistochemistry, and chromogenic in situ hybridization for high-risk HPV-DNA. The results were compared with those of qRT-PCR on matched fresh-frozen samples. Compared with the reference test, the sensitivity, specificity, positive, and negative predictive values of the RNAscope HPV-test and of p16 immunohistochemistry were 93%, 94%, 96%, 88% and 96%, 93%, 96%, and 93%, respectively. Five cases were discrepant between the RNAscope HPV-test and p16-immunohistochemisrty. The RNAscope HPV-test demonstrated excellent analytical performance against the 'gold standard' and is easier to interpret than chromogenic in situ hybridization. p16-immunohistochemistry also performed very well, however its main weakness is that it is an indirect marker of the presence of HPV. These data suggest that the RNAscope HPV-test is a promising test that could be developed as a clinical standard for the precise identification of HPV-driven oropharyngeal squamous cell carcinoma.

Interleukin 1b Mediates Intestinal Inflammation in Mice and Patients With Interleukin 10 Receptor Deficiency

Gastroenterology

2016 Dec 01

Shouval DS, Biswas A, Kang YH, Griffith AE, Konnikova L, Mascanfroni ID, Redhu NS, Frei SM, Field M, Doty AL, Goldsmith JD, Bhan AK, Loizides A, Weiss B, Yerushalmi B, Yanagi T, Lui X, Quintana FJ, Muise AM, Klein C, Horwitz BH, Glover SC, Bousvaros A, Sn
PMID: 27693323 | DOI: 10.1053/j.gastro.2016.08.055

Interleukin 10 receptor (IL10R)-deficient mice develop spontaneous colitis and, similarly, patients with loss-of-function mutations in IL10R develop severe infant-onset inflammatory bowel disease. Loss of IL10R signaling in mouse and human macrophages is associated with increased production of interleukin 1β. We demonstrated that innate immune production of IL1β mediates colitis in IL10R-deficient mice. Transfer of Il1r1-/- CD4+ T cells into Rag1-/-/Il10rb-/- mice reduced the severity of their colitis (compared to mice that received CD4+ T cells that express IL1R), accompanied by decreased production of interferon gamma, tumor necrosis factor-α, and IL17A. In macrophages from mice without disruption of IL10R signaling or from healthy humans (controls), incubation with IL10 reduced canonical activation of the inflammasome and production of IL1β through transcriptional and post-translational regulation of NLRP3. Lipopolysaccharide and adenosine triphosphate stimulation of macrophages from Il10rb-/- mice or IL10R-deficient patients resulted in increased production of IL1β. Moreover, in human IL10R-deficient macrophages, lipopolysaccharide stimulation alone triggered IL1β secretion via non-canonical, caspase 8-dependent activation of the inflammasome. We treated 2 IL10R-deficient patients with severe and treatment-refractory infant-onset inflammatory bowel disease with the IL1-receptor antagonist anakinra. Both patients had marked clinical, endoscopic, and histologic responses after 4-7 weeks. This treatment served as successful bridge to allogeneic hematopoietic stem cell transplantation in 1 patient. Our findings indicate that loss of IL10 signaling leads to intestinal inflammation, at least in part, through increased production of IL1 by innate immune cells, leading to activation of CD4+ T cells. Agents that block IL1 signaling might be used to treat patients with inflammatory bowel disease resulting from IL10R deficiency.

The Claustrum Supports Resilience to Distraction

Curr Biol.

2018 Aug 16

Atlan G, Terem A, Peretz-Rivlin N, Sehrawat K, Gonzales BJ, Pozner G, Tasaka G, Goll Y, Refaeli R, Zviran O, Lim BK, Groysman M, Goshen I, Mizrahi A, Nelken I, Citri A.
PMID: 30122531 | DOI: 10.1016/j.cub.2018.06.068

A barrage of information constantly assaults our senses, of which only a fraction is relevant at any given point in time. However, the neural circuitry supporting the suppression of irrelevant sensory distractors is not completely understood. The claustrum, a circuit hub with vast cortical connectivity, is an intriguing brain structure, whose restrictive anatomy, thin and elongated, has precluded functional investigation. Here, we describe the use of Egr2-CRE mice to access genetically defined claustral neurons. Utilizing conditional viruses for anterograde axonal labeling and retrograde trans-synaptic tracing, we validated this transgenic model for accessing the claustrum and extended the known repertoire of claustral input/output connectivity. Addressing the function of the claustrum, we inactivated CLEgr2+ neurons, chronically as well as acutely, in mice performing an automated two-alternative forced-choice behavioral task. Strikingly, inhibition of CLEgr2+ neurons did not significantly impact task performance under varying delay times and cue durations, but revealed a selective role for the claustrum in supporting performance in the presence of an irrelevant auditory distractor. Further investigation of behavior, in the naturalistic maternal pup-retrieval task, replicated the result of sensitization to an auditory distractor following inhibition of CLEgr2+ neurons. Initiating investigation into the underlying mechanism, we found that activation of CLEgr2+ neurons modulated cortical sensory processing, suppressing tone representation in the auditory cortex. This functional study, utilizing selective genetic access, implicates the claustrum in supporting resilienceto distraction, a fundamental aspect of attention.

The relative contributions of cell-dependent cortical microcircuit aging to cognition and anxiety

Biological Psychiatry

2018 Oct 05

Shukla R, Prevot TD, French L, Isserlin R, Rocco BR, Banasr M, Bader GD, Sibille E.
PMID: - | DOI: 10.1016/j.celrep.2018.09.034

Background Aging is accompanied by altered thinking (cognition) and feeling (mood), functions that depend on information processing by brain cortical cell microcircuits. We hypothesized that age-associated long-term functional and biological changes are mediated by gene transcriptomic changes within neuronal cell-types forming cortical microcircuits, namely excitatory pyramidal cells (PYC) and inhibitory GABAergic neurons expressing vasoactive intestinal peptide (Vip), somatostatin (Sst) and parvalbumin (Pvalb). Methods To test this hypothesis, we assessed locomotor, anxiety-like and cognitive behavioral changes between young (2 months, n=9) and old (22 months, n=12) male C57BL/6 mice, and performed frontal cortex cell-type specific molecular profiling, using laser-capture microscopy and RNA sequencing. Results were analyzed by neuroinformatics and validated by fluorescent in situ hybridization. Results Old-mice displayed increased anxiety and reduced working memory. The four cell-types displayed distinct age-related transcriptomes and biological pathway profiles, affecting metabolic and cell signaling pathways, and selective markers of neuronal vulnerability (Ryr3), resilience (Oxr1), and mitochondrial dynamics (Opa1), suggesting high age-related vulnerability of PYCs, and variable degree of adaptation in GABAergic neurons. Correlations between gene expression and behaviors suggest that changes in cognition and anxiety associated with age are partly mediated by normal age-related cell changes, and that additional age-independent decreases in synaptic and signaling pathways, notably in PYC and SST-neurons further contribute to behavioral changes. Conclusions Our study demonstrates cell-dependent differential vulnerability and coordinated cell-specific cortical microcircuit molecular changes with age. Collectively, the results suggest intrinsic molecular links between aging, cognition and mood-related behaviors with SST-neurons contributing evenly to both behavioral conditions.

HPV RNA CISH score identifies two prognostic groups in a p16 positive oropharyngeal squamous cell carcinoma population

Modern Pathology

2018 Jun 20

Augustin J, Mandavit M, Outh-Gauer S, Grard O, Gasne C, Lépine C, Mirghani H, Hans S, Bonfils P, Denize T, Bruneval P, Bishop JA, Fontugne J, Péré H, Tartour E, Badoual C.
PMID: - | DOI: 10.1038/s41379-018-0090-y

HPV-related and HPV-unrelated oropharyngeal squamous cell carcinomas are two distinct entities according to the Union for International Cancer Control, with a better prognosis conferred to HPV-related oropharyngeal squamous cell carcinomas. However, variable clinical outcomes are observed among patients with p16 positive oropharyngeal squamous cell carcinoma, which is a surrogate marker of HPV infection. We aimed to investigate the prognostic value of RNA CISH against E6 and E7 transcripts (HPV RNA CISH) to predict such variability. We retrospectively included 50 histologically confirmed p16 positive oropharyngeal squamous cell carcinomas (p16 positive immunostaining was defined by a strong staining in 70% or more of tumor cells). HPV RNA CISH staining was assessed semi-quantitatively to define two scores: RNA CISH “low” and RNA CISH “high”. Negative HPV RNA CISH cases were scored as RNA CISH “low”. This series contained 29 RNA CISH low cases (58%) and 21 RNA CISH high cases (42%). Clinical and pathologic baseline characteristics were similar between the two groups. RNA CISH high staining was associated with a better overall survival in both univariate and multivariate analyses (p = 0.033 and p = 0.042, respectively). Other recorded parameters had no prognostic value. In conclusion, HPV RNA CISH might be an independent prognostic marker in p16 positive oropharyngeal squamous cell carcinomas and might help guide therapeutics.

Diagnosis of HPV driven oropharyngeal cancers: Comparing p16 based algorithms with the RNAscope HPV-test

Oral Oncology

2016 Oct 15

Mirghani H, Casiraghi O, Guerlain J, Amen F, He MX, Ma XJ, Luo Y, Mourareau C, Drusch F, Lakdhar AB, Melkane A, St Guily L, Badoual C, Scoazec JY, Borget I, Aupérin A, Dalstein V, Vielh P.
PMID: - | DOI: http://dx.doi.org/10.1016/j.oraloncology.2016.10.009

Abstract

Background

Accurate identification of HPV-driven oropharyngeal cancer (OPC) is a major issue and none of the current diagnostic approaches is ideal. An in situ hybridization (ISH) assay that detects high-risk HPV E6/E7 mRNA, called the RNAscope HPV-test, has been recently developed. Studies have suggested that this assay may become a standard to define HPV-status.

Methods

To further assess this test, we compared its performance against the strategies that are used in routine clinical practice: p16 immunohistochemistry (IHC) as a single test and algorithms combining p16-IHC with HPV-DNA identification by PCR (algorithm-1) or ISH (algorithm-2).

Results

105 OPC specimens were analyzed. The prevalence of HPV-positive samples varied considerably: 67% for p16-IHC, 54% for algorithm-1, 61% for algorithm-2 and 59% for the RNAscope HPV-test. Discrepancies between the RNAscope HPV-test and p16-IHC, algorithm-1 and 2 were noted in respectively 13.3%, 13.1%, and 8.6%.

The 4 diagnostic strategies were able to identify 2 groups with different prognosis according to HPV-status, as expected. However, the greater survival differential was observed with the RNAscope HPV-test [HR: 0.19, 95% confidence interval (CI), 0.07–0.51, p = 0.001] closely followed by algorithm-1 (HR: 0.23, 95% CI, 0.08–0.66, p = 0.006) and algorithm-2 (HR: 0.26, 95% CI, 0.1–0.65, p = 0.004). In contrast, a weaker association was found when p16-IHC was used as a single test (HR: 0.33, 95% CI, 0.13–0.81, p = 0.02).

Conclusions

Our findings suggest that the RNAscope HPV-test and p16-based algorithms perform better that p16 alone to identify OPC that are truly driven by HPV-infection. The RNAscope HPV-test has the advantage of being a single test.

Spindle Cell Carcinomas of the Head and Neck Rarely Harbor Transcriptionally-Active Human Papillomavirus.

Head and neck pathology, ;7(3):250–257.

Watson RF, Chernock RD, Wang X, Liu W, Ma XJ, Luo Y, Wang H, El-Mofty SK, Lewis JS Jr (2013).
PMID: 23536041 | DOI: 10.1007/s12105-013-0438-z.

Spindle cell carcinoma is an uncommon variant of squamous cell carcinoma characterized by spindled or pleomorphic cells which appear to be a true sarcoma but are actually epithelial. Some head and neck squamous cell carcinoma variants can be human papillomavirus (HPV)-related and have improved outcomes. We sought to determine if spindle cell carcinomas are associated with transcriptionally-active HPV. Cases of spindle cell carcinoma were retrieved from department files. Transcriptionally-active HPV was determined by mRNA in situ hybridization for high risk HPV E6 and E7 transcripts and by a surrogate marker, p16 immunohistochemistry, with a 50% staining cutoff. RT-PCR for high risk HPV mRNA was performed on the cases that were technical failures by in situ hybridization. Medical records and follow up information were retrieved for all patients. Of 31 cases, 5 were from the oropharynx, 12 from the oral cavity, and 14 from the larynx or hypopharynx. One purely spindled oral cavity spindle cell carcinoma was HPV positive. It was also diffusely positive for p16. Another laryngeal spindle cell carcinoma was HPV positive in both the squamous and spindle cell components, but was negative for p16. None of the five oropharyngeal spindle cell carcinomas were positive for p16 or HPV RNA. The HPV positive patients both presented at high stage (IV) and died with disease within 2 years of diagnosis. The majority of spindle cell carcinomas of the head and neck, including those arising in the oropharynx, are not related to transcriptionally active HPV. Although the number of cases is too small for any definitive conclusions, for the rare HPV positive spindle cell carcinoma cases, positive viral status does not appear to confer any prognostic benefit.
Potential clinical implications of HPV status and expressions of p53 and cyclin D1 among oropharyngeal cancer patients.

J Oral Pathol Med.

2018 Sep 06

David Lu XJ, Liu KYP, Soares RC, Thomson T, Prisman E, Wu J, Poh CF.
PMID: 30191616 | DOI: 10.1111/jop.12779

Abstract

BACKGROUND:

There is increasing evidence that high-risk human papillomavirus plays significant role in oropharyngeal cancer; however, there is lack of knowledge on the interplay between the virus and its downstream related molecules and their possible prognostic values. The objectives of the study are to better understand the interplay of the HR-HPV and its associated downstream molecules and to evaluate potential biomarkers for patient outcomes.

METHODS:

We conducted a retrospective study with available formalin-fixed, paraffin-embedded tissue from 244 oropharyngeal cancer patients that received curative radiotherapy or concurrent chemoradiotherapy from 2000 to 2008. In addition to chart review, we performed HPV DNA and RNA in situ hybridization and immunohistochemistry for p53, the retinoblastoma protein, p16, and cyclin D1 analysis. Cox-proportional hazard and Kaplan-Meier survival analysis were used to determine the prognostic markers for clinical outcomes.

RESULTS:

Patients averaged 57.3±9.4 year-old and were mostly males (76.2%) and ever-smokers (76.2%). All patients received curative radiotherapy and 44.3% received concurrent chemoradiotherapy. We detected the human papillomavirus in 77.9% of study patients. Ever-smokers, more advanced tumor stage, and receiving radiotherapy only had poorer 5-year overall survival, disease-specific survival, and loco-regional recurrence. Cases with positive human papillomavirus and p53 overexpression had poorer disease-specific survival. Cases without human papillomavirus, but cyclin D1 overexpression, was associated with poorer 5-year overall survival.

CONCLUSIONS:

Our data suggests that additional p53 and cyclin D1 testing may benefit oropharyngeal cancer patients with known human papillomavirus status.

In situ hybridization detection methods for HPV16 E6/E7 mRNA in identifying transcriptionally active HPV infection of oropharyngeal carcinoma: an updating

Human Pathology

2017 Oct 06

Volpi CC, Ciniselli CM, Gualeni AV, Plebani M, Alfieri S, Verderio P, Locati L, Perrone F, Quattronea P, Carbone A, Pilotti S, Gloghini A.
PMID: 28993274 | DOI: 10.1016/j.humpath.2017.09.011

The aim of this study is comparing two in situ hybridization (ISH) detection methods for human papilloma virus (HPV) 16 E6/E7 mRNA, i.e. the RNAscope™ 2.0 High Definition (HD) and the upgraded RNAscope™ 2.5 HD version. The RNAscope™ 2.5 HD has recently replaced the RNAscope™ 2.0 HD detection kit. Therefore, this investigation starts from the need to analytically validate the new mRNA ISH assay and, possibly, to refine the current algorithm for HPV detection in oropharyngeal squamous cell carcinoma (OSCC) with the final goal to apply it to daily laboratory practice. The study was based on HPV status and on generated data, interpreted by a scoring algorithm. The results highlighted that the compared RNAscope HPV tests had a good level of interchangeability and enabled to identify OSCC that are truly driven by high risk-HPV infection. This was also supported by the comparison of the RNAscope HPV test with HPV E6/E7 mRNA real time reverse transcriptase-polymerase chain reaction (RT-PCR), in a fraction of cases where material for HPV E6/E7 mRNA real time RT-PCR was available. Furthermore, the algorithm that associates p16 immunohistochemistry (IHC) with the identification of HPV mRNA by RNAscope was more effective than the one that associated p16 IHC with the identification of HPV DNA by ISH.

Pages

  • « first
  • ‹ previous
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?