Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (142)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • (-) Remove Slc17a7 filter Slc17a7 (52)
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (30) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (23) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (17) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (7) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (5) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (4) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (81) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (62) Apply Infectious Disease filter
  • Neuroscience (49) Apply Neuroscience filter
  • Inflammation (4) Apply Inflammation filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • behavioral (2) Apply behavioral filter
  • Other: Methods (2) Apply Other: Methods filter
  • Alcohol Use (1) Apply Alcohol Use filter
  • Allergy Response (1) Apply Allergy Response filter
  • Anesthesia (1) Apply Anesthesia filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorder (1) Apply Autism spectrum disorder filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • CGT (1) Apply CGT filter
  • Chronic Pain (1) Apply Chronic Pain filter
  • Depression (1) Apply Depression filter
  • Development (1) Apply Development filter
  • Epilepsy (1) Apply Epilepsy filter
  • Fragile X Syndrome (1) Apply Fragile X Syndrome filter
  • Infectious (1) Apply Infectious filter
  • Lung (1) Apply Lung filter
  • MicroRNAs (1) Apply MicroRNAs filter
  • Other: Cell Biology (1) Apply Other: Cell Biology filter
  • Other: Immunology (1) Apply Other: Immunology filter
  • Protocols (1) Apply Protocols filter
  • Sleep (1) Apply Sleep filter
  • Stress (1) Apply Stress filter
  • Technique (1) Apply Technique filter

Category

  • Publications (142) Apply Publications filter
Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain

Cell.

2018 Aug 09

Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA.
PMID: 30096299 | DOI: 10.1016/j.cell.2018.07.028

The mammalian brain is composed of diverse, specialized cell populations. To systematically ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA expression in 690,000 individual cells sampled from 9 regions of the adult mouse brain. We identified 565 transcriptionally distinct groups of cells using computational approaches developed to distinguish biological from technical signals. Cross-region analysis of these 565 cell populations revealed features of brain organization, including a gene-expression module for synthesizing axonal and presynaptic components, patterns in the co-deployment of voltage-gated ion channels, functional distinctions among the cells of the vasculature and specialization of glutamatergic neurons across cortical regions. Systematic neuronal classifications for two complex basal ganglia nuclei and the striatum revealed a rare population of spiny projection neurons. This adult mouse brain cell atlas, accessible through interactive online software (DropViz), serves as a reference for development, disease, and evolution.

Identification of visual cortex cell types and species differences using single-cell RNA sequencing

Nature communications

2022 Nov 12

Wei, JR;Hao, ZZ;Xu, C;Huang, M;Tang, L;Xu, N;Liu, R;Shen, Y;Teichmann, SA;Miao, Z;Liu, S;
PMID: 36371428 | DOI: 10.1038/s41467-022-34590-1

The primate neocortex exerts high cognitive ability and strong information processing capacity. Here, we establish a single-cell RNA sequencing dataset of 133,454 macaque visual cortical cells. It covers major cortical cell classes including 25 excitatory neuron types, 37 inhibitory neuron types and all glial cell types. We identified layer-specific markers including HPCAL1 and NXPH4, and also identified two cell types, an NPY-expressing excitatory neuron type that expresses the dopamine receptor D3 gene; and a primate specific activity-dependent OSTN + sensory neuron type. Comparisons of our dataset with humans and mice show that the gene expression profiles differ between species in relation to genes that are implicated in the synaptic plasticity and neuromodulation of excitatory neurons. The comparisons also revealed that glutamatergic neurons may be more diverse across species than GABAergic neurons and non-neuronal cells. These findings pave the way for understanding how the primary cortex fulfills the high-cognitive functions.
Rejection of benign melanocytic nevi by nevus-resident CD4+ T cells

Science advances

2021 Jun 01

Schiferle, EB;Cheon, SY;Ham, S;Son, HG;Messerschmidt, JL;Lawrence, DP;Cohen, JV;Flaherty, KT;Moon, JJ;Lian, CG;Sullivan, RJ;Demehri, S;
PMID: 34162549 | DOI: 10.1126/sciadv.abg4498

Melanoma and melanocytic nevi harbor shared lineage-specific antigens and oncogenic mutations. Yet, the relationship between the immune system and melanocytic nevi is unclear. Using a patient-derived xenograft (PDX) model, we found that 81.8% of the transplanted nevi underwent spontaneous regression, while peripheral skin remained intact. Nevus-resident CD4+ T helper 1 cells, which exhibited a massive clonal expansion to melanocyte-specific antigens, were responsible for nevus rejection. Boosting regulatory T cell suppressive function with low-dose exogenous human interleukin-2 injection or treatment with a human leukocyte antigen (HLA) class II-blocking antibody prevented nevus rejection. Notably, mice with rejected nevus PDXs were protected from melanoma tumor growth. We detected a parallel CD4+ T cell-dominant immunity in clinically regressing melanocytic nevi. These findings reveal a mechanistic explanation for spontaneous nevus regression in humans and posit the activation of nevus-resident CD4+ effector T cells as a novel strategy for melanoma immunoprevention and treatment.
Differences in the Prevalence of Human Papillomavirus (HPV) in Head and Neck Squamous Cell Cancers by Sex, Race, Anatomic Tumor Site, and HPV Detection Method.

JAMA Oncol.

2016 Dec 08

D'Souza G, Westra WH, Wang SJ, van Zante A, Wentz A, Kluz N, Rettig E, Ryan WR, Ha PK, Kang H, Bishop J, Quon H, Kiess AP, Richmon JD, Eisele DW, Fakhry C.
PMID: 27930766 | DOI: 10.1001/jamaoncol.2016.3067

Abstract

IMPORTANCE:

Human papillomavirus (HPV) causes an increasing proportion of oropharyngeal squamous cell carcinomas (OPSCCs), particularly in white men. The prevalence of HPV among other demographic groups and other anatomic sites of HNSCC is unclear.

OBJECTIVE:

To explore the role of HPV tumor status among women and nonwhites with OPSCC and patients with nonoropharyngeal head and neck squamous cell carcinoma (non-OP HNSCC).

DESIGN, SETTING, AND PARTICIPANTS:

Retrospective cohort study at 2 tertiary academic centers including cases diagnosed 1995 through 2012, oversampled for minorities and females. A stratified random sample of 863 patients with newly diagnosed SCC of the oral cavity, oropharynx, larynx, or nasopharynx was used.

MAIN OUTCOMES AND MEASURES:

Outcomes were HPV status as measured by p16 immunohistochemical analysis, HPV16 DNA in situ hybridization (ISH), and high-risk HPV E6/E7 mRNA ISH.

RESULTS:

Of 863 patients, 551 (63.9%) were male and median age was 58 years (interquartile range, 51-68 years). Among 240 OPSCCs, 144 (60%) were p16 positive (p16+), 115 (48%) were HPV16 DNA ISH positive (ISH16+), and 134 (56%) were positive for any oncogenic HPV type (ISH+). From 1995 to 2012, the proportion of p16+ OPSCC increased significantly among women (from 29% to 77%; P = .005 for trend) and men (36% to 72%; P < .001 for trend), as well as among whites (39% to 86%; P < .001 for trend) and nonwhites (32% to 62%; P = .02 for trend). Similar results were observed for ISH+ OPSCC (P ≤ .01 for all). Among 623 non-OP HNSCCs, a higher proportion were p16+ compared with ISH positive (62 [10%] vs 30 [5%]; P = .001). A high proportion (26 of 62 [42%]) of these p16+ non-OP HNSCCs were found in sites adjacent to the oropharynx. The proportion of p16+ and ISH+ non-OP HNSCCs were similar by sex. Over time, the proportion of non-OP HNSCCs that were p16+ (or ISH+) increased among whites (P = .04 for trend) but not among nonwhites (each P > .51 for trend). Among OPSCCs, p16 had high sensitivity (100%), specificity (91%), and positive (93%) and negative predictive value (100%) for ISH positivity. In non-OP HNSCCs, p16 had lower sensitivity (83%) and positive predictive value (40%) but high specificity (94%) and negative predictive value (99%) for ISH positivity.

CONCLUSIONS AND RELEVANCE:

During 1995 through 2012, the proportion of OPSCCs caused by HPV has increased significantly. This increase was not restricted to white men but was a consistent trend for women and men, as well as for white and nonwhite racial groups. Few non-OP HNSCCs were HPV related. P16 positivity was a good surrogate for ISH+ tumor status among OPSCC, but not a good surrogate for non-OP HNSCC.

High-risk type human papillomavirus infection and p16 expression in laryngeal cancer.

Infectious Agents and Cancer

2019 Mar 05

Kiyuna A, Ikegami T, Uehara T, Hirakawa H, Agena S, Uezato J, Kondo S, Yamashita Y, Deng Z, Maeda H, Suzuki M, Ganaha A.
PMID: - | DOI: 10.1186/s13027-019-0224-y

Background

Oropharyngeal cancers associated with high-risk type human papillomavirus (HR-HPV) infection have better prognosis than virus negative cancers. Similarly, the HPV status in laryngeal cancer (LC) may be associated with better outcome.

Methods

Samples from 88 patients with LC were investigated using the polymerase chain reaction (PCR) and p16 immunohistochemistry for HR-HPV analysis. The cut-off point for p16 overexpression was diffuse (≥75%) tumor expression with at least moderate (+ 2/3) staining intensity.

Results

The 5-year cumulative survival (CS) rate was 80.7% in all patients with LC. According to a combination of HR-HPV DNA status and p16 overexpression, subjects with LC were divided into four groups: HR-HPV DNA-positive/p16 overexpression-positive (n = 5, 5.7%; CS = 100%), HR-HPV DNA-positive/p16 overexpression-negative (n = 11, 12.5%; CS =81.8%), HR-HPV DNA-negative/p16 overexpression-positive (n = 0), and HR-HPV DNA-negative/p16 overexpression-negative (n = 72, 81.8%; CS = 79.5%). HR-HPV DNA-positive/p16-positive cases tended to have integrated HPV infection and high viral load, compared with HR-HPV DNA-positive/p16 overexpression-negative cases.

Conclusions

LC patients with HPV infection and high levels of p16 expression might have an improved survival outcome; however, it is necessary to recruit additional LC cases with HPV infection to determine the definitive characteristics of HPV-mediated LC and estimate survival outcome. These results may contribute to the development of a useful method for selecting patients with a potentially fair response to treatment and ensure laryngeal preservation.

Adenosquamous Carcinoma of the Head and Neck: Relationship to Human Papillomavirus and Review of the Literature.

Head & Neck Pathology, 5(2):108–116.

Masand RP, El-Mofty SK, Ma XJ, Luo Y, Flanagan JJ, Lewis JS Jr (2011).
PMID: 21305368 | DOI: 10.1007/s12105-011-0245-3.

Adenosquamous carcinoma (ADSC) of the head and neck is an aggressive variant of squamous cell carcinoma (SCC). Certain variants of head and neck SCC are human papillomavirus (HPV)-related and have better prognosis. The relationship of HPV to head and neck ADSC has not been investigated. We searched our files for the term "adenosquamous" and head and neck subsites and found cases from 1998 to 2009. The requisite histologic criteria were the presence of SCC combined with distinct gland formation and/or intracellular mucin. DNA in situ hybridization for high-risk HPV, RNA in situ hybridization for high risk HPV E6 and E7 transcripts, and immunohistochemistry for p16 and p53 were performed. The existing literature on ADSC was also reviewed. Of the 18 cases, eight were from the larynx and hypopharynx, four from the oral cavity, three from the oropharynx, and three from the nasal cavity. Three cases (16%) showed both high risk HPV E6 and E7 and p16 expression, one from the nasal cavity and two from the oropharynx. Both oropharyngeal carcinoma patients were alive and disease free at 34 and 103 months, respectively. ADSCs of the head and neck are a heterogeneous group of tumors. A small minority of cases harbor HPV and most of these, particularly those occurring at sites with known high prevalence of HPV, show active viral transcription with detectable E6 and E7 and overexpression of p16. The HPV-related oropharyngeal cases, though rare, appear to do very well clinically, while the remaining cohort of ADSC patients do quite poorly. Head and neck ADSC appears to be a mixed variant that can be further classified according to its HPV status.
A multidimensional coding architecture of the vagal interoceptive system

Nature

2022 Mar 01

Zhao, Q;Yu, CD;Wang, R;Xu, QJ;Dai Pra, R;Zhang, L;Chang, RB;
PMID: 35296859 | DOI: 10.3760/cma.j.cn112151-20210719-00516

Interoception, the ability to timely and precisely sense changes inside the body, is critical for survival1-4. Vagal sensory neurons (VSNs) form an important body-to-brain connection, navigating visceral organs along the rostral-caudal axis of the body and crossing the surface-lumen axis of organs into appropriate tissue layers5,6. The brain can discriminate numerous body signals through VSNs, but the underlying coding strategy remains poorly understood. Here we show that VSNs code visceral organ, tissue layer and stimulus modality-three key features of an interoceptive signal-in different dimensions. Large-scale single-cell profiling of VSNs from seven major organs in mice using multiplexed projection barcodes reveals a 'visceral organ' dimension composed of differentially expressed gene modules that code organs along the body's rostral-caudal axis. We discover another 'tissue layer' dimension with gene modules that code the locations of VSN endings along the surface-lumen axis of organs. Using calcium-imaging-guided spatial transcriptomics, we show that VSNs are organized into functional units to sense similar stimuli across organs and tissue layers; this constitutes a third 'stimulus modality' dimension. The three independent feature-coding dimensions together specify many parallel VSN pathways in a combinatorial manner and facilitate the complex projection of VSNs in the brainstem. Our study highlights a multidimensional coding architecture of the mammalian vagal interoceptive system for effective signal communication.
Combined squamous cell carcinoma and Merkel cell carcinoma of the vulva: Role of human papillomavirus and Merkel cell polyomavirus

JAAD Case Reports 1.4 (2015): 196-199.

Chen CH, Wu YY, Kuo KT, Liau JY, Liang CW.
PMID: http

Merkel cell carcinoma (MCC), an uncommon and highly aggressive cutaneous malignancy, usually occurs on the sun-damaged skin of the elderly and is characterized by coexpression of neuroendocrine markers and CK20, a discriminant from other types of visceral neuroendocrine neoplasias. Since the discovery of Merkel cell polyomavirus (MCV), many researchers have confirmed its presence in about 80% of cutaneous MCCs.1 Although some cutaneous MCCs were reported to be associated with squamous cell carcinomas (SCCs), such combined cases accounted for only a minor portion and the viral status appeared to be different from pure MCC.
SALM4 negatively regulates NMDA receptor function and fear memory consolidation

Communications biology

2021 Sep 29

Lie, E;Yeo, Y;Lee, EJ;Shin, W;Kim, K;Han, KA;Yang, E;Choi, TY;Bae, M;Lee, S;Um, SM;Choi, SY;Kim, H;Ko, J;Kim, E;
PMID: 34588597 | DOI: 10.1038/s42003-021-02656-3

Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).
Partial p16 staining in oropharyngeal squamous cell carcinoma: extent and pattern correlate with human papillomavirus RNA status.

Mod Pathol. 2012 Sep;25(9):1212-20.

Lewis JS Jr1, Chernock RD, Ma XJ, Flanagan JJ, Luo Y, Gao G, Wang X, El-Mofty SK (2012)
PMID: 22596101doi

Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma has unique biology and better outcomes. p16 immunostaining is used as a surrogate marker for transcriptionally active HPV. Although diffuse staining is generally accepted as positive, the significance of partial staining has not been established, nor has the cutoff for extent of p16 staining that should be used to identify a tumor as HPV-related. From three other large studies utilizing p16 immunohistochemistry, we identified all cases with partial positive staining. The p16-stained slides were reviewed by three study pathologists for staining (nuclear and cytoplasmic) extent (in quartiles), and also for percentage that was confluent (ie, back-to-back cell staining). Tumors were histologically typed (keratinizing, non-keratinizing, or non-keratinizing with maturation) and tested for high-risk HPV by RNA in-situ hybridization and reverse-transcriptase PCR. For the 16 cases, there were two 4+(13%), five 3+(31%), six 2+(38%), and three 1+(19%) p16 staining tumors. Extent of staining ranged from 5 to 90% of cells positive with 25% or more confluent staining in 4/16 (25%). Of the 16 (31%) cases, 5 were HPV-related on the basis of RNA in-situ hybridization and reverse-transcriptase PCR. All of these cases had >50% p16 staining, 4/5 (80%) had more than 25% confluent staining, and 4/7 (57%) had non-keratinizing histological features. Only one of the p16 1+/2+ tumors was HPV RNA-positive (by reverse-transcriptase PCR only and low level). All 1+/2+ cases were keratinizing type or undifferentiated. By sensitive detection methods, most partial p16-positive squamous cell carcinoma cases with >50% staining harbor transcriptionally active HPV, and most HPV+ tumors have significant amounts of confluent staining. Cases with <50% p16 staining and lacking significant confluent staining rarely harbor HPV. These results support that greater than 75% p16 staining or, alternatively, >50% staining combined with >25% confluent areas, are suitable cutoffs for defining positivity.

Pages

  • « first
  • ‹ previous
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?