ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Clin Pathol.
2015 Aug 31
Zhang Z, Weaver DL, Olsen D, deKay J, Peng Z, Ashikaga T, Evans MF.
PMID: 26323944 | DOI: 10.1136/jclinpath-2015-203275
Abstract
AIM:
Long non-coding RNAs (lncRNAs) are potential biomarkers for breast cancer risk stratification. LncRNA expression has been investigated primarily by RNA sequencing, quantitative reverse transcription PCR or microarray techniques. In this study, six breast cancer-implicated lncRNAs were investigated by chromogenic in situ hybridisation (CISH).
METHODS:
Invasive breast carcinoma (IBC), ductal carcinoma in situ (DCIS) and normal adjacent (NA) breast tissues from 52 patients were screened by CISH. Staining was graded by modified Allred scoring.
RESULTS:
HOTAIR, H19 and KCNQ1OT1 had significantly higher expression levels in IBC and DCIS than NA (p<0.05), and HOTAIR and H19 were expressed more strongly in IBC than in DCIS tissues (p<0.05). HOTAIR and KCNQ101T were expressed in tumour cells; H19 and MEG3 were expressed in stromal microenvironment cells; MALAT1 was expressed in all cells strongly and ZFAS1 was negative or weakly expressed in all specimens.
CONCLUSION:
These data corroborate the involvement of three lncRNAs (HOTAIR, H19 and KCNQ1OT1) in breast tumourigenesis and support lncRNA CISH as a potential clinical assay. Importantly, CISH allows identification of the tissue compartment expressing lncRNA.
Sci Rep. 2015 Mar 5;5:8765.
Gökmen-Polar Y, Vladislav IT, Neelamraju Y, Janga SC, Badve S.
PMID: 25739705 | DOI: 10.1038/srep08765.
Nat Cell Biol.
2016 Jan 11
Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, Wei Y, Ma G, Park PK, Zhou J, Zhou Y, Hu Z, Zhou Y, Marks JR, Liang H, Hung MC, Lin C, Yang L.
PMID: 26751287 | DOI: 10.1038/ncb3295
Although long non-coding RNAs (lncRNAs) predominately reside in the nucleus and exert their functions in many biological processes, their potential involvement in cytoplasmic signal transduction remains unexplored. Here, we identify a cytoplasmic lncRNA, LINK-A (long intergenic non-coding RNA for kinase activation), which mediates HB-EGF-triggered, EGFR:GPNMB heterodimer-dependent HIF1α phosphorylation at Tyr 565 and Ser 797 by BRK and LRRK2, respectively. These events cause HIF1α stabilization, HIF1α-p300 interaction, and activation of HIF1α transcriptional programs under normoxic conditions. Mechanistically, LINK-A facilitates the recruitment of BRK to the EGFR:GPNMB complex and BRK kinase activation. The BRK-dependent HIF1α Tyr 565 phosphorylation interferes with Pro 564 hydroxylation, leading to normoxic HIF1α stabilization. Both LINK-A expression and LINK-A-dependent signalling pathway activation correlate with triple-negative breast cancer (TNBC), promoting breast cancer glycolysis reprogramming and tumorigenesis. Our findings illustrate the magnitude and diversity of cytoplasmic lncRNAs in signal transduction and highlight the important roles of lncRNAs in cancer.
Cell Stem Cell.
2017 Mar 08
Chen D, Wu M, Li Y, Chang I, Yuan Q, Ekimyan-Salvo M, Deng P, Yu B, Yu Y, Dong J, Szymanski JM, Ramadoss S, Li J, Wang CY.
PMID: 28285905 | DOI: 10.1016/j.stem.2017.02.003
Squamous cell carcinoma in the head and neck (HNSCC) is a common yet poorly understood cancer, with adverse clinical outcomes due to treatment resistance, recurrence, and metastasis. Putative cancer stem cells (CSCs) have been identified in HNSCC, and BMI1 expression has been linked to these phenotypes, but optimal treatment strategies to overcome chemotherapeutic resistance and eliminate metastases have not yet been identified. Here we show through lineage tracing and genetic ablation that BMI1+ CSCs mediate invasive growth and cervical lymph node metastasis in a mouse model of HNSCC. This model and primary human HNSCC samples contain highly tumorigenic, invasive, and cisplatin-resistant BMI1+ CSCs, which exhibit increased AP-1 activity that drives invasive growth and metastasis of HNSCC. Inhibiting AP-1 or BMI1 sensitized tumors to cisplatin-based chemotherapy, and it eliminated lymph node metastases by targeting CSCs and the tumor bulk, suggesting potential regimens to overcome resistance to treatments and eradicate HNSCC metastasis.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com