Wang L, Hou S, Han YG.
PMID: 27214567 | DOI: 10.1038/nn.4307.
The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex, which reflects the expansion of neural progenitors, especially basal progenitors including basal radial glia (bRGs) and intermediate progenitor cells (IPCs). We found that constitutively active Sonic hedgehog (Shh) signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but Shh signaling was not strongly active in the mouse embryonic neocortex, and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically, Shh signaling increased the initial generation and self-renewal of bRGs and IPC proliferation in mice and the initial generation of bRGs in human cerebral organoids. Thus, robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding.
Sci Rep. 2019 Jan 18;9(1):226.
Lim Y, Cho IT, Shi X, Grinspan JB, Cho G, Golden JA.
PMID: PMID: 30659230 | DOI: DOI:10.1038/s41598-018-36194-6
Early brain development requires a tight orchestration between neural tube patterning and growth. How pattern formation and brain growth are coordinated is incompletely understood. Previously we showed that aristaless-related homeobox (ARX), a paired-like transcription factor, regulates cortical progenitor pool expansion by repressing an inhibitor of cell cycle progression. Here we show that ARX participates in establishing dorsoventral identity in the mouse forebrain. In Arx mutant mice, ventral genes, including Olig2, are ectopically expressed dorsally. Furthermore, Gli1 is upregulated, suggesting an ectopic activation of SHH signaling. We show that the ectopic Olig2 expression can be repressed by blocking SHH signaling, implicating a role for SHH signaling in Olig2 induction. We further demonstrate that the ectopic Olig2 accounts for the reduced Pax6 and Tbr2 expression, both dorsal specific genes essential for cortical progenitor cell proliferation. These data suggest a link between the control of dorsoventral identity of progenitor cells and the control of their proliferation. In summary, our data demonstrate that ARX functions in a gene regulatory network integrating normal forebrain patterning and growth, providing important insight into how mutations in ARX can disrupt multiple aspects of brain development and thus generate a wide spectrum of neurodevelopmental phenotypes observed in human patients.
Cellular and molecular life sciences : CMLS
Zhu, A;Real, F;Capron, C;Rosenberg, AR;Silvin, A;Dunsmore, G;Zhu, J;Cottoignies-Callamarte, A;Massé, JM;Moine, P;Bessis, S;Godement, M;Geri, G;Chiche, JD;Valdebenito, S;Belouzard, S;Dubuisson, J;Lorin de la Grandmaison, G;Chevret, S;Ginhoux, F;Eugenin, EA;Annane, D;Bordé, EC;Bomsel, M;
PMID: 35708858 | DOI: 10.1007/s00018-022-04318-x
SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precursors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened differentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-CoV-2 alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.
British journal of pharmacology
Gupte, SA;Bakshi, CS;Blackham, E;Duhamel, GE;Jordan, A;Salgame, P;D'silva, M;Khan, MY;Nadler, J;Gupte, R;
PMID: 37259182 | DOI: 10.1111/bph.16155
COVID-19 infections caused by SARS-CoV-2 disseminate through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research. In this study, we investigated the effect of N-Ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl] urea (NEOU), a novel 17α-ketosteroid derivative, on the severity of COVID-19 infections.Studies were conducted in SARS-CoV-2-infected K18-hACE2 mice.SARS-CoV-2-infected K18-hACE2 mice developed severe inflammatory crises and immune responses along with up-regulation of genes in associated signaling pathways in male more than female mice. Notably, SARS-CoV-2 infection down-regulated genes encoding drug metabolizing cytochrome P450 enzymes in male but not female mice. Treatment with NEOU (1 mg/kg/day) 24 or 72 h post-viral infection alleviated lung injury by decreasing expression of genes encoding inflammatory cytokines and chemokines while increasing expression of genes encoding immunoglobins. In situ hybridization using RNA scope probes and immunohistochemical assays revealed that NEOU increased resident CD169+ immunoregulatory macrophages and IBA-1 immunoreactive macrophage-dendritic cells within alveolar spaces in the lungs of infected mice. Consequentially, NEOU reduced morbidity more prominently in male than female mice. However, NEOU increased median survival time and accelerated recovery from infection by 6 days in both males and females.These findings demonstrate that SARS-CoV-2 exhibits gender bias by differentially regulating genes encoding inflammatory cytokines, immunogenic factors, and drug-metabolizing enzymes, in male versus female mice. Most importantly, we identified a novel 17α-ketosteroid that reduces the severity of COVID-19 infection and could be beneficial for reducing impact of COVID-19.This article is protected by
Kawaoka, Y;Uraki, R;Kiso, M;Iida, S;Imai, M;Takashita, E;Kuroda, M;Halfmann, P;Loeber, S;Maemura, T;Yamayoshi, S;Fujisaki, S;Wang, Z;Ito, M;Ujie, M;Iwatsuki-Horimoto, K;Furusawa, Y;Wright, R;Chong, Z;Ozono, S;Yasuhara, A;Ueki, H;Sakai, Y;Li, R;Liu, Y;Larson, D;Koga, M;Tsutsumi, T;Adachi, E;Saito, M;Yamamoto, S;Matsubara, S;Hagihara, M;Mitamura, K;Sato, T;Hojo, M;Hattori, SI;Maeda, K;Okuda, M;Murakami, J;Duong, C;Godbole, S;Douek, D;Watanabe, S;Ohmagari, N;Yotsuyanagi, H;Diamond, M;Hasegawa, H;Mitsuya, H;Suzuki, T;
PMID: 35233565 | DOI: 10.21203/rs.3.rs-1375091/v1
The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.
Meseda, CA;Stauft, CB;Selvaraj, P;Lien, CZ;Pedro, C;Nuñez, IA;Woerner, AM;Wang, TT;Weir, JP;
PMID: 34862398 | DOI: 10.1038/s41541-021-00410-8
Numerous vaccine candidates against SARS-CoV-2, the causative agent of the COVID-19 pandemic, are under development. The majority of vaccine candidates to date are designed to induce immune responses against the viral spike (S) protein, although different forms of S antigen have been incorporated. To evaluate the yield and immunogenicity of different forms of S, we constructed modified vaccinia virus Ankara (MVA) vectors expressing full-length S (MVA-S), the RBD, and soluble S ectodomain and tested their immunogenicity in dose-ranging studies in mice. All three MVA vectors induced spike-specific immunoglobulin G after one subcutaneous immunization and serum titers were boosted following a second immunization. The MVA-S and MVA-ssM elicited the strongest neutralizing antibody responses. In assessing protective efficacy, MVA-S-immunized adult Syrian hamsters were challenged with SARS-CoV-2 (USA/WA1/2020). MVA-S-vaccinated hamsters exhibited less severe manifestations of atypical pneumocyte hyperplasia, hemorrhage, vasculitis, and especially consolidation, compared to control animals. They also displayed significant reductions in gross pathology scores and weight loss, and a moderate reduction in virus shedding was observed post challenge in nasal washes. There was evidence of reduced viral replication by in situ hybridization, although the reduction in viral RNA levels in lungs and nasal turbinates did not reach significance. Taken together, the data indicate that immunization with two doses of an MVA vector expressing SARS-CoV-2 S provides protection against a stringent SARS-CoV-2 challenge of adult Syrian hamsters, reaffirm the utility of this animal model for evaluating candidate SARS-CoV-2 vaccines, and demonstrate the value of an MVA platform in facilitating vaccine development against SARS-CoV-2.
Pathogens (Basel, Switzerland)
Valyi-Nagy, T;Fredericks, B;Wilson, J;Shukla, SD;Setty, S;Slavin, KV;Valyi-Nagy, K;
PMID: 37375462 | DOI: 10.3390/pathogens12060772
The mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may spread to the human brain are poorly understood, and the infection of cancer cells in the brain by SARS-CoV-2 in Coronavirus disease 2019 (COVID-19) patients has been the subject of only one previous case report. Here, we report the detection of SARS-CoV-2 RNA by in situ hybridization in lung-cancer cells metastatic to the brain and adjacent brain parenchyma in a 63-year-old male patient with COVID-19. These findings suggest that metastatic tumors may transport the virus from other parts of the body to the brain or may break down the blood-brain barrier to allow for the virus to spread to the brain. These findings confirm and extend previous observations that cancer cells in the brain can become infected by SARS-CoV-2 in patients with COVID-19 and raise the possibility that SARS-CoV-2 can have a direct effect on cancer growth and outcome.
Tu, HQ;Li, S;Xu, YL;Zhang, YC;Li, PY;Liang, LY;Song, GP;Jian, XX;Wu, M;Song, ZQ;Li, TT;Hu, HB;Yuan, JF;Shen, XL;Li, JN;Han, QY;Wang, K;Zhang, T;Zhou, T;Li, AL;Zhang, XM;Li, HY;
PMID: 37262147 | DOI: 10.1126/science.abm1962
The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.
Dermatology (Basel, Switzerland)
Marzano, AV;Moltrasio, C;Genovese, G;De Andrea, M;Caneparo, V;Vezzoli, P;Morotti, D;Sena, P;Venturini, M;Battocchio, S;Caputo, V;Rizzo, N;Maronese, CA;Venegoni, L;Boggio, FL;Rongioletti, F;Calzavara-Pinton, P;Berti, E;
PMID: 37075721 | DOI: 10.1159/000530746
COronaVIrus Disease 19 (COVID-19) is associated with a wide spectrum of skin manifestations, but SARS-CoV-2 RNA in lesional skin has been demonstrated only in few cases.To demonstrate SARS-CoV-2 presence in skin samples from patients with different COVID-19-related cutaneous phenotypes.Demographic and clinical data from 52 patients with COVID-19-associated cutaneous manifestations were collected. Immunohistochemistry and digital PCR (dPCR) were performed in all skin samples. RNA in situ hybridization (ISH) was used to confirm the presence of SARS-CoV-2 RNA.Twenty out of 52 (38%) patients presented SARS-CoV-2 positivity in the skin. Among these, 10/52 (19%) patients tested positive for spike protein on immunohistochemistry, five of whom had also positive testing on dPCR. Of the latter, one tested positive both for ISH and ACE-2 on immunohistochemistry while another one tested positive for nucleocapsid protein. Twelve patients showed positivity only for nucleocapsid protein on immunohistochemistry.SARS-CoV-2 was detected only in 38% of patients, without any association with a specific cutaneous phenotype, suggesting that the pathophysiology of cutaneous lesions mostly depends on the activation of the immune system. The combination of spike and nucleocapsid immunohistochemistry has higher diagnostic yield than dPCR. Skin persistence of SARS-CoV-2 may depend on timing of skin lesions, viral load and immune response.S. Karger AG, Basel.
Jerome, K;Sattar, S;Mehedi, M;
PMID: 36779029 | DOI: 10.1016/j.mex.2023.102050
Visualizing and quantifying mRNA and its corresponding protein provides a unique perspective of gene expression at a single-molecule level. Here, we describe a method for differentiating primary cells for making airway epithelium and detecting SARS-CoV-2 Spike (S) mRNA and S protein in the paraformaldehyde-fixed paraffin-embedded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected airway epithelium. For simultaneous detection of mRNA and protein in the same cell, we combined two protocols: 1. RNA fluorescence-based in situ hybridization (RNA-FISH) based mRNA detection and 2. fluorescence-based immunohistochemistry (IHC) based protein detection. The detection of mRNA and proteins in the same cell also allows for quantifying them using the open-source software QuPath, which provides an accurate and more straightforward fluorescent-based quantification of mRNA and protein in the microscopic images of the infected cells. Additionally, we can achieve the subcellular distribution of both S mRNA and S protein. This method identifies SARS-CoV-2 S gene products' (mRNA and protein) degree of expression and their subcellular localization in the infected airway epithelium. Advantages of this method include: •Simultaneous detection and quantification of mRNA and protein in the same cell.•Universal use due to the ability to use mRNA-specific primer-probe and protein-specific antibodies.•An open-source software QuPath provides a straightforward fluorescent-based quantification.
Scandinavian cardiovascular journal : SCJ
Razaghi, A;Szakos, A;Al-Shakarji, R;Björnstedt, M;Szekely, L;
PMID: 35678649 | DOI: 10.1080/14017431.2022.2085320
Objective. Patients with underlying heart diseases have a higher risk of dying from Covid-19. It has also been suggested that Covid-19 affects the heart through myocarditis. Despite the rapidly growing research on the management of Covid-19 associated complications, most of the ongoing research is focused on the respiratory complications of Covid-19, and little is known about the prevalence of myocarditis. Design. This study aimed to characterize myocardial involvement by using a panel of antibodies to detect hypoxic and inflammatory changes and the presence of SARS-CoV-2 proteins in heart tissues obtained during the autopsy procedure of Covid-19 deceased patients. Thirty-seven fatal COVID-19 cases and 21 controls were included in this study. Results. Overall, the Covid-19 hearts had several histopathological changes like the waviness of myocytes, fibrosis, contract band necrosis, infiltration of polymorphonuclear neutrophils, vacuolization, and necrosis of myocytes. In addition, endothelial damage and activation were detected in heart tissue. However, viral replication was not detected using RNA in situ hybridization. Also, lymphocyte infiltration, as a hallmark of myocarditis, was not seen in this study. Conclusion. No histological sign of myocarditis was detected in any of our cases; our findings are thus most congruent with the hypothesis of the presence of a circulating endothelium activating factor such as VEGF, originating outside of the heart, probably from the hypoxic part of the Covid-19 lungs.
Paul, T;Ledderose, S;Bartsch, H;Sun, N;Soliman, S;Märkl, B;Ruf, V;Herms, J;Stern, M;Keppler, OT;Delbridge, C;Müller, S;Piontek, G;Kimoto, YS;Schreiber, F;Williams, TA;Neumann, J;Knösel, T;Schulz, H;Spallek, R;Graw, M;Kirchner, T;Walch, A;Rudelius, M;
PMID: 35332140 | DOI: 10.1038/s41467-022-29145-3
Progressive respiratory failure and hyperinflammatory response is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. Despite mounting evidence of disruption of the hypothalamus-pituitary-adrenal axis in COVID-19, relatively little is known about the tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to adrenal glands and associated changes. Here we demonstrate adrenal viral tropism and replication in COVID-19 patients. Adrenal glands showed inflammation accompanied by inflammatory cell death. Histopathologic analysis revealed widespread microthrombosis and severe adrenal injury. In addition, activation of the glycerophospholipid metabolism and reduction of cortisone intensities were characteristic for COVID-19 specimens. In conclusion, our autopsy series suggests that SARS-CoV-2 facilitates the induction of adrenalitis. Given the central role of adrenal glands in immunoregulation and taking into account the significant adrenal injury observed, monitoring of developing adrenal insufficiency might be essential in acute SARS-CoV-2 infection and during recovery.