Brain pathology (Zurich, Switzerland)
Tran, DN;Bakx, ATCM;van Dis, V;Aronica, E;Verdijk, RM;Ouwendijk, WJD;
PMID: 34913212 | DOI: 10.1111/bpa.13044
Increasing evidence supports the role of neurotropic herpes simplex virus 1 (HSV-1) in the pathogenesis of Alzheimer's disease (AD). However, it is unclear whether previously reported findings in HSV-1 cell culture and animal models can be translated to humans. Here, we analyzed clinical specimens from latently HSV-1 infected individuals and individuals with lytic HSV infection of the brain (herpes simplex encephalitis; HSE). Latent HSV-1 DNA load and latency-associated transcript (LAT) expression were identical between trigeminal ganglia (TG) of AD patients and controls. Amyloid β (Aβ) and hyperphosphorylated tau (pTau) were not detected in latently HSV-infected TG neurons. Aging-related intraneuronal Aβ accumulations, neurofibrillary tangles (NFT), and/or extracellular Aβ plaques were observed in the brain of some HSE patients, but these were neither restricted to HSV-infected neurons nor brain regions containing virus-infected cells. Analysis of unique brain material from an AD patient with concurrent HSE showed that HSV-infected cells frequently localized close to Aβ plaques and NFT, but were not associated with exacerbated AD-related pathology. HSE-associated neuroinflammation was not associated with specific Aβ or pTau phenotypes. Collectively, we observed that neither latent nor lytic HSV infection of human neurons is directly associated with aberrant Aβ or pTau protein expression in ganglia and brain.
Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining
Yu, L;Majerciak, V;Xue, XY;Uberoi, A;Lobanov, A;Chen, X;Cam, M;Hughes, SH;Lambert, PF;Zheng, ZM;
PMID: 34343212 | DOI: 10.1371/journal.ppat.1009812
MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors.
Establishment of a Three-Dimensional In Vitro Model of Equine Papillomavirus Type 2 Infection
Ramsauer, A;Wachoski-Dark, G;Fraefel, C;Ackermann, M;Brandt, S;Grest, P;Knight, C;Favrot, C;Tobler, K;
| DOI: 10.3390/v13071404
There is growing evidence that equine papillomavirus type 2 (EcPV2) infection is etiologically associated with the development of genital squamous cell carcinoma (SCC) and precursor lesions in equids. However, the precise mechanisms underlying neoplastic progression remain unknown. To allow the study of EcPV2-induced carcinogenesis, we aimed to establish a primary equine cell culture model of EcPV2 infection. Three-dimensional (3D) raft cultures were generated from equine penile perilesional skin, plaques and SCCs. Using histological, molecular biological and immunohistochemical methods, rafts versus corresponding natural tissue sections were compared with regard to morphology, presence of EcPV2 DNA, presence and location of EcPV2 gene transcripts and expression of epithelial, mesenchymal and tumor/proliferation markers. Raft cultures from perilesional skin harboring only a few EcPV2-positive (EcPV2+) cells accurately recapitulated the differentiation process of normal skin, whilst rafts from EcPV2+ penile plaques were structurally organized but showed early hyperplasia. Rafts from EcPV2+ SCCs exhibited pronounced hyperplasia and marked dysplasia. Raft levels of EcPV2 oncogene transcription (E6/E7) and expression of tumor/proliferation markers p53, Ki67 and MCM7 expression positively correlated with neoplastic progression, again reflecting the natural situation. Three-dimensional raft cultures accurately reflected major features of corresponding ex vivo material, thus constituting a valuable new research model to study EcPV2-induced carcinogenesis.
Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy
Béziat, V;Rapaport, F;Hu, J;Titeux, M;Bonnet des Claustres, M;Bourgey, M;Griffin, H;Bandet, É;Ma, CS;Sherkat, R;Rokni-Zadeh, H;Louis, DM;Changi-Ashtiani, M;Delmonte, OM;Fukushima, T;Habib, T;Guennoun, A;Khan, T;Bender, N;Rahman, M;About, F;Yang, R;Rao, G;Rouzaud, C;Li, J;Shearer, D;Balogh, K;Al Ali, F;Ata, M;Dabiri, S;Momenilandi, M;Nammour, J;Alyanakian, MA;Leruez-Ville, M;Guenat, D;Materna, M;Marcot, L;Vladikine, N;Soret, C;Vahidnezhad, H;Youssefian, L;Saeidian, AH;Uitto, J;Catherinot, É;Navabi, SS;Zarhrate, M;Woodley, DT;Jeljeli, M;Abraham, T;Belkaya, S;Lorenzo, L;Rosain, J;Bayat, M;Lanternier, F;Lortholary, O;Zakavi, F;Gros, P;Orth, G;Abel, L;Prétet, JL;Fraitag, S;Jouanguy, E;Davis, MM;Tangye, SG;Notarangelo, LD;Marr, N;Waterboer, T;Langlais, D;Doorbar, J;Hovnanian, A;Christensen, N;Bossuyt, X;Shahrooei, M;Casanova, JL;
PMID: 34214472 | DOI: 10.1016/j.cell.2021.06.004
We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.
The Exon Junction Complex core factor eIF4A3 is a key regulator of HPV16 gene expression
Meznad, K;Paget-Bailly, P;Jacquin, E;Peigney, A;Aubin, F;Guittaut, M;Mougin, C;Prétet, JL;Baguet, A;
PMID: 33760064 | DOI: 10.1042/BSR20203488
High-risk human papillomavirus (hrHPVs), particularly HPV16 and HPV18, are the etiologic factors of ano-genital cancers and some head and neck squamous cell carcinomas. Viral E6 and E7 oncoproteins, controlled at both transcriptional and post-transcriptional levels, drive hrHPVs-induced carcinogenesis. In this study, we investigated the implication of the DEAD-box helicase eIF4A3, an Exon Junction Complex factor, in the regulation of HPV16 gene expression. Our data revealed that the depletion of the factor eIF4A3 upregulated E7 oncoprotein levels. We also showed that the inhibition of the nonsense-mediated RNA decay (NMD) pathway, resulted in the upregulation of E7 at both RNA and protein levels. We therefore proposed that HPV16 transcripts might present different susceptibilities to NMD and that this pathway could play a key role in the levels of expression of these viral oncoproteins during the development of HPV-related cancers.
Head Neck Pathol. 2018 Nov 29.
Rooper LM, McCuiston AM, Westra WH, Bishop JA.
PMID: 30498968 | DOI: 10.1007/s12105-018-0990-7
SOX10 immunoexpression is increasingly recognized in salivary gland tumors, including but not limited to those with myoepithelial, serous acinar, and intercalated duct differentiation. However, SOX10 expression has not been extensively evaluated in other epithelial tumors that can mimic salivary origin. Basaloid squamous cell carcinoma (SCC) is a unique variant of SCC that shows morphologic overlap with several salivary tumors, including adenoid cystic carcinoma, basal cell adenocarcinoma, and myoepithelial carcinoma. We performed SOX10 immunohistochemistry on 22 basaloid SCCs and 280 non-basaloid SCCs. If tissue was available, we also performed immunohistochemistry for S100 and p16, and in-situ hybridization for high-risk HPV RNA. SOX10 was positive in 13/22 basaloid SCCs (59%), including 5/6 (83%) that were HPV-positive and 6/12 (50%) that were HPV-negative. Only 2/12 basaloid SCC (17%) demonstrated focal S100 expression. All non-basaloid SCCs were SOX10 negative. Frequent positivity for SOX10 in basaloid SCC presents a significant diagnostic pitfall for distinguishing these tumors from various basaloid salivary carcinomas. The preponderance of SOX10 expression in the basaloid variant of HPV-positive SCC also presents a diagnostic challenge in separating it from HPV-related multiphenotypic sinonasal carcinoma. SOX10 may be more broadly considered a marker of basal differentiation and should not be assumed to be specific for salivary origin in epithelial head and neck tumors.
Rani, AQ;Nurmemet, D;Liffick, J;Khan, A;Mitchell, D;Li, J;Zhao, B;Liu, X;
PMID: 37376685 | DOI: 10.3390/v15061388
Several oncogenic viruses are associated with approximately 20% of human cancers. Experimental models are crucial for studying the pathogenicity and biological aspects of oncogenic viruses and their potential mechanisms in tumorigenesis. Current cell models have considerable limitations such as: their low yield, genetic and epigenetic modification, and reduction in tumor heterogeneity during long propagation. Cancer cell lines are limited and not appropriate for studying the viral life cycle, for example, natural viral life cycles of HPV and EBV, and their persistence and latency in epithelial cells are poorly understood, since these processes are highly related to epithelial differentiation. Therefore, there is an urgent need of reliable human physiological cell models to study viral life cycle and cancer initiation. Conditional cell reprogramming (CCR) is a rapid and robust cell culture system, where the cells can be established from minimally invasive or noninvasive specimens and their lineage functions preserved during the long-term culture. These CR cells retain their ability to differentiate at air-liquid interface (ALI). Here, we recapitulated the applications of CR and ALI approaches in modeling host-virus interactions and viral-mediated tumorigenesis.
Bedard, MC;Chihanga, T;Carlile, A;Jackson, R;Brusadelli, MG;Lee, D;VonHandorf, A;Rochman, M;Dexheimer, PJ;Chalmers, J;Nuovo, G;Lehn, M;Williams, DEJ;Kulkarni, A;Carey, M;Jackson, A;Billingsley, C;Tang, A;Zender, C;Patil, Y;Wise-Draper, TM;Herzog, TJ;Ferris, RL;Kendler, A;Aronow, BJ;Kofron, M;Rothenberg, ME;Weirauch, MT;Van Doorslaer, K;Wikenheiser-Brokamp, KA;Lambert, PF;Adam, M;Steven Potter, S;Wells, SI;
PMID: 37031202 | DOI: 10.1038/s41467-023-37377-0
Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.
Han, LM;Saunders, TA;Calkins, SM;
PMID: 34758205 | DOI: 10.1002/cncy.22529
Human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV-OPSCC) presents frequently as metastasis in a neck lymph node that may be cystic or necrotic. Fine-needle aspiration (FNA) biopsies are often first-line diagnostic procedures. p16 immunohistochemistry (IHC) is a surrogate marker for high-risk HPV (hrHPV) infection but can be challenging to interpret. This study evaluated the use of hrHPV in situ hybridization (ISH) in cytology cell blocks of cystic neck lesions.Twenty-four FNA cases with cell blocks and surgical correlates were evaluated. p16 IHC and hrHPV ISH were assessed on cell blocks (C-p16 and C-hrHPV ISH), and hrHPV ISH on surgical samples (S-hrHPV ISH). All results were classified as negative, positive, or equivocal.Two cases were excluded because of insufficient tissue on recut. On the basis of C-hrHPV ISH cases, 12 were positive, 5 were negative, and 5 were equivocal. All 12 positive C-hrHPV ISH cases had concordant S-hrHPV ISH with no false positives. Of the 5 negative C-hrHPV ISH cases, 4 had concordant S-hrHPV ISH, and 1 had a discordant S-hrHPV ISH. Of the 5 equivocal C-hrHPV ISH cases, S-hrHPV ISH were both positive and negative. Fourteen cases were equivocal by C-p16; 9 cases were reliably classified by C-hrHPV ISH (5 positive, 4 negative; 64%).C-hrHPV ISH can be reliably used, especially when positive. A negative or equivocal interpretation of C-hrHPV ISH may warrant repeat testing. Compared to C-p16, C-hrHPV ISH is more frequently diagnostic and could be helpful for HPV-OSCC diagnosis and management.
Kürten, CHL;Kulkarni, A;Cillo, AR;Santos, PM;Roble, AK;Onkar, S;Reeder, C;Lang, S;Chen, X;Duvvuri, U;Kim, S;Liu, A;Tabib, T;Lafyatis, R;Feng, J;Gao, SJ;Bruno, TC;Vignali, DAA;Lu, X;Bao, R;Vujanovic, L;Ferris, RL;
PMID: 34921143 | DOI: 10.1038/s41467-021-27619-4
Head and neck squamous cell carcinoma (HNSCC) is characterized by complex relations between stromal, epithelial, and immune cells within the tumor microenvironment (TME). To enable the development of more efficacious therapies, we aim to study the heterogeneity, signatures of unique cell populations, and cell-cell interactions of non-immune and immune cell populations in 6 human papillomavirus (HPV)+ and 12 HPV- HNSCC patient tumor and matched peripheral blood specimens using single-cell RNA sequencing. Using this dataset of 134,606 cells, we show cell type-specific signatures associated with inflammation and HPV status, describe the negative prognostic value of fibroblasts with elastic differentiation specifically in the HPV+ TME, predict therapeutically targetable checkpoint receptor-ligand interactions, and show that tumor-associated macrophages are dominant contributors of PD-L1 and other immune checkpoint ligands in the TME. We present a comprehensive single-cell view of cell-intrinsic mechanisms and cell-cell communication shaping the HNSCC microenvironment.
Neuropathology : official journal of the Japanese Society of Neuropathology
Kuroda, N;Kawaji, H;Arai, Y;Otsuki, Y;Miura, K;Minato, H;Kuroda, K;Nakatogawa, H;Yamazoe, T;Tanaka, T;Inenaga, C;
PMID: 34933397 | DOI: 10.1111/neup.12762
Human papillomavirus (HPV)-related multiphenotypic sinonasal carcinoma (HMSC) is newly suggested and characterized by HPV-related tumors. HMSC has a relatively good prognosis. No cases of brain invasion have been reported to date. We encountered a case of brain invasion by HMSC, in which we assessed the effectiveness of radiotherapy in comparison with biopsy and autopsy. A 69-year-old man was referred to a hospital three months after intracerebral hemorrhage (ICH). Contrast magnetic resonance imaging revealed a tumor in the ethmoid sinus involving the brain. We performed transnasal biopsy and intensity-modulated radiotherapy for sinonasal and intracranial lesions. Despite radiotherapy, the patient died on day 41 after radiation. Biopsy specimens displayed mixed findings of epithelial and mesenchymal components. The tumor was immunoreactive for p16, and the RNA in situ hybridization for HPV was positive. Finally, we diagnosed the patient as having HMSC. Autopsy of the sinonasal tissue revealed a reduction in the number of tumor cells. There was a marked reduction in the number of tumor cells in the sinonasal tissue compared to that in the invaded brain tissue. The effectiveness of radiotherapy could depend on the histopathological components and location of the lesion, even in the same patient.
Tie, W;Ge, F;
PMID: 34610246 | DOI: 10.1089/dna.2020.6205
Cervical cancer is the leading cause of morbidity and mortality in women throughout the world, human papillomavirus 16 (HPV16) is the main type of HPV causing invasive cervical cancer. However, the underlying mechanism of the high carcinogenicity of HPV16 remains unclear. In the current study, we documented that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA, is upregulated in HPV16-positive cervical cancer tissue and cell lines. The results of immunohistochemistry and immunofluorescence showed that MALAT1 was mainly localized in the cytoplasm. To clarify the biological functions of MALAT1 in cervical cancer cells, we performed gain- and loss-of-function experiments to explore the underlying molecular mechanism. Functionally, the proliferation of cervical cancer was detected by Cell Counting Kit-8 (CCK-8) and colony formation assay in MALAT1 overexpression or knockdown cells, our data showed that MALAT1 promotes the proliferation of cervical cancer cells. Mechanistically, our results suggested that MALAT1 upregulates Methionine adenosyltransferase 2A (MAT2A) by sponging miR-485-5p. Moreover, the gain-of-function assay validated the function of MAT2A in HPV16-positive cervical cancer proliferation. Taken together, our results demonstrated that MALAT1 acts as a competitive endogenous RNA (ceRNA) to regulate MAT2A by sponging miR-485-5p in HPV16-positive cervical cancer, suggesting that MALAT1 may act as a potential therapeutic target for HPV16-positive cervical cancer.