Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for HPV-HR18

ACD can configure probes for the various manual and automated assays for HPV-HR18 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for HPV-HR18 (36)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (20)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV-HR18 (20) Apply HPV-HR18 filter
  • HPV E6/E7 (3) Apply HPV E6/E7 filter
  • HPV-HR16 (3) Apply HPV-HR16 filter
  • HPV-LR10 (1) Apply HPV-LR10 filter
  • HPV-E6/E7 (1) Apply HPV-E6/E7 filter

Product

  • RNAscope 2.5 LS Assay (5) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter

Research area

  • Cancer (20) Apply Cancer filter
  • HPV (14) Apply HPV filter
  • Infectious Disease (11) Apply Infectious Disease filter
  • Immunotherapy (2) Apply Immunotherapy filter

Category

  • Publications (20) Apply Publications filter
Therapeutic efficacy of a VSV-GP-based human papilloma virus vaccine in a murine cancer model

Journal of molecular biology

2023 Apr 20

Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096

Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.
Detection of HPV infection in urothelial carcinoma using RNAscope: Clinicopathological characterization

Cancer medicine

2021 Jun 23

Musangile, FY;Matsuzaki, I;Okodo, M;Shirasaki, A;Mikasa, Y;Iwamoto, R;Takahashi, Y;Kojima, F;Murata, SI;
PMID: 34164940 | DOI: 10.1002/cam4.4091

Human papillomavirus (HPV) is a well-established mucosotropic carcinogen, but its impact on urothelial neoplasm is unclear. We aimed to clarify the clinical and pathological features of HPV-related urothelial carcinoma (UC).Tissue samples of 228 cases of UC were obtained from the bladder, upper and lower urinary tract, and metastatic sites to construct a tissue microarray. The samples were analyzed for the presence of HPV by a highly sensitive and specific mRNA in situ hybridization (RISH) technique (RNAscope) with a probe that can detect 18 varieties of high-risk HPV. We also conducted immunohistochemistry (IHC) for a major HPV capsid antibody and DNA-PCR.The HPV detection rates varied among the methods; probably due to low HPV copy numbers in UC tissues and the insufficient specificity and sensitivity of the IHC and PCR assays. The RISH method had the highest accuracy and identified HPV infection in 12 (5.2%) of the cases. The histopathological analysis of the HPV-positive UC showed six cases of usual type UC, five cases of UC with squamous differentiation (UC_SqD), and one case of micropapillary UC. The HPV detection rate was six-fold higher in the cases of UC_SqD than in the other variants of UC (odds ratio [OR] =8.9, p = 0.002). In addition, HPV infection showed a significant association with tumor grade (OR =9.8, p = 0.03) and stage (OR =4.7, p = 0.03) of UC. Moreover, the metastatic rate was higher in HPV-positive than in negative UC (OR =3.4).These data indicate that although the incidence of HPV infection in UC is low, it is significantly associated with squamous differentiation and poor prognosis. Furthermore, our observations show that RNAscope is an ideal method for HPV detection in UC compared with the other standard approaches such as IHC and PCR assays.
Morphoproteomics, E6/E7 in-situ hybridization, and biomedical analytics define the etiopathogenesis of HPV-associated oropharyngeal carcinoma and provide targeted therapeutic options.

J Otolaryngol Head Neck Surg.

2017 Aug 17

Brown RE, Naqvi S, McGuire MF, Buryanek J, Karni RJ.
PMID: 28818106 | DOI: 10.1186/s40463-017-0230-2

Abstract

BACKGROUND:

Human papillomavirus (HPV) has been identified as an etiopathogenetic factor in oropharyngeal squamous cell carcinoma. The HPV E6 and E7 oncogenes are instrumental in promoting proliferation and blocking differentiation leading to tumorigenesis. Although surgical intervention can remove such tumors, the potential for an etiologic field effect with recurrent disease is real. A downstream effector of E7 oncoprotein, enhancer of zeste homolog 2 (EZH2), is known to promote proliferation and to pose a block in differentiation and in turn, could lead to HPV-induced malignant transformation. However, the EZH2 pathway is amenable to low toxicity therapies designed to promotedifferentiation to a more benign state and prevent recurrent disease by inhibiting the incorporation of HPV into the genome. This is the first study using clinical specimens to demonstrate EZH2 protein expression in oropharyngeal carcinoma (OPC).

METHODS:

The study included eight patients with oropharyngeal carcinoma, confirmed p16INK4a- positive by immunohistochemistry (IHC). The tissue expression of E6/E7 messenger RNA (mRNA) was measured by RNAscope™ in-situ hybridization technology. Expression of EZH2, Ki-67, and mitotic indices were assessed by morphoproteomic analysis. Biomedical analytics expanded the results with data from Ingenuity Pathway Analysis (IPA) and KEGG databases to construct a molecular network pathway for further insights.

RESULTS:

Expression of E6 and E7 oncogenes in p16INK4a- positive oropharyngeal carcinoma was confirmed. EZH2 and its correlates, including elevated proliferation index (Ki-67) and mitotic progression were also present. Biomedical analytics validated the relationship between HPV- E6 and E7 and the expression of the EZH2 pathway.

CONCLUSION:

There is morphoproteomic and mRNA evidence of the association of p16INK4a-HPV infection with the E6 and E7 oncogenes and the expression of EZH2, Ki-67 and mitotic progression in oropharyngeal carcinoma. The molecular network biology was confirmed by biomedical analytics as consistent with published literature. This is significant because the biology lends itself to targeted therapeutic options using metformin, curcumin, celecoxib and sulforaphane as therapeutic strategies to prevent progression or recurrence of disease.

International Endocervical Adenocarcinoma Criteria and Classification (IECC): A New Pathogenetic Classification for Invasive Adenocarcinomas of the Endocervix

Am J Surg Pathol.

2018 Feb 01

Stolnicu S, Barsan I, Hoang L, Patel P, Terinte C, Pesci A, Aviel-Ronen S, Kiyokawa T, Alvarado-Cabrero I, Pike MC, Oliva E, Park KJ, Soslow RA.
PMID: 29135516 | DOI: 10.1097/PAS.0000000000000986

We sought to classify endocervical adenocarcinomas (ECAs) based on morphologic features linked to etiology (ie, human papillomavirus [HPV] infection), unlike the World Health Organization 2014 classification. The International Endocervical Adenocarcinoma Criteria and Classification (IECC criteria), described herein, distinguishes between human papillomavirus-associated adenocarcinoma (HPVA), recognized by the presence of luminal mitoses and apoptosis seen at scanning magnification, and no or limited HPVA features (nonhuman papillomavirus-associated adenocarcinoma [NHPVA]). HPVAs were then subcategorized based on cytoplasmic features (mostly to provide continuity with preexisting classification schemes), whereas NHPVAs were subclassified based on established criteria (ie, gastric-type, clear cell, etc.). Complete slide sets from 409 cases were collected from 7 institutions worldwide. Tissue microarrays representing 297 cases were constructed; immunohistochemistry (p16, p53, vimentin, progesterone receptor) and chromogenic in situ hybridization using an RNA-based probe set that recognizes 18 varieties of high-risk HPV were performed to validate IECC diagnoses. The 5 most common IECC diagnoses were usual-type (HPVA) (73% of cohort), gastric-type (NHPVA) (10%), mucinous adenocarcinoma of HPVA type, including intestinal, mucinous not otherwise specified, signet-ring, and invasive stratified mucin-producing carcinoma categories (9%), clear cell carcinoma (NHPVA) (3%) and adenocarcinoma, not otherwise specified (2%). Only 3 endometrioid carcinomas were recognized and all were NHPVA. When excluding cases thought to have suboptimal tissue processing, 90% and 95% of usual-type IECC cases overexpressed p16 and were HPV, whereas 37% and 3% of NHPVAs were p16 and HPV, respectively. The 1 HPV gastric-type carcinoma was found to have hybrid HPVA/NHPVA features on secondary review. NHPVA tumors were larger and occurred in significantly older patients, compared with HPVA tumors (P<0.001). The high-risk HPV chromogenic in situ hybridization probe set had superior sensitivity, specificity, and positive and negative predictive values (0.955, 0.968, 0.992, 0.833, respectively) compared with p16 immunohistochemistry (0.872, 0.632, 0.907, 0.545, respectively) to identify HPV-related usual carcinoma and mucinous carcinoma. IECC reliably segregates ECAs into HPVA and NHPVA types using morphology alone. This study confirms that usual-type ECAs are the most common type worldwide and that mucinous carcinomas comprise a mixture of HPVA and NHPVA, with gastric-type carcinoma being the major NHPVA type. Endometrioid and serous carcinomas of the endocervix are extraordinarily rare. Should clinical outcomes and genomic studies continue to support these findings, we recommend replacement of the World Health Organization 2014 criteria with the IECC 2017.

[Clinicopathological characteristics of HPV(+) oropharyngeal squamous cell carcinoma].

Chinese journal of pathology

2019 Feb 02

Zhao YH, Bai YP, Mao ML, Zhang H, Zhao XL, Yang DM, Wan HF, Liu HG.
PMID: 30695865 | DOI: 10.3760/cma.j.issn.0529-5807.2019.02.010

Objective: To observe the clinicopathologic features of oropharyngeal squamous cell carcinoma associated with human papilloma virus (OPSCC-HPV) and discuss the role and value of different in situ hybridization (ISH) detection methods for HPV in pathologic diagnosis. Methods: Fifteen cases of OPSCC-HPV were collected from Department of Pathology, Beijing Tongren Hospital, Capital Medical University from January 2016 to August 2018. These cases were diagnosed in accordance with the WHO classification of head and neck tumors. The histopathologic features and the clinicopathologic data were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of p16, Ki-67 and p53. ISH was used to detect HPV DNA (6/11 and 16/18). RNAscope technology was used to evaluate the presence of HPV mRNAs (16 and 18). Results: The mean age for the 15 patients (8 males, 7 females) was 47 years (range from 30 to 69 years). OPSCC-HPV typically presentedat an advanced clinical stage, six patients had cervical lymphadenopathy (large and cystic), seven had tonsillar swelling, one had tumor at base of tongue, and one had odynophagia. Microscopically the tumors exhibited distinctive non-keratinizing squamous cell carcinoma morphology. Cervical nodal metastases were large and cystic, with thickening of lymph node capsules. OPSCC-HPV raised from crypt epithelium and extended beneath the tonsillar surface epithelial lining as nests and lobules, often with central necrosis. Tumor cells displayed a high N: C ratio, and high mitotic and apoptotic rates. Tumor nests are often embedded within lymphoid stroma, and may be infiltrated by lymphoid cells.Fifteen cases (15/15) were strongly positive for p16; Ki-67 index were 60%-90%; they were focally positive or negative for p53. Ten cases (10/10) were negative for HPV 6/11 DNA, and one case(1/10) was focally positive for HPV16/18 DNA. Eleven cases (11/11) were strongly positive for HPV16 mRNA, one case was focally positive for HPV18 mRNA. Conclusions: OPSCC-HPV is a pathologically and clinically distinct form of head and neck squamous cell carcinoma. OPSCC-HPV is associated with high-risk HPV (type 16) in all cases. Detection of high-risk HPV16 mRNA by RNAscope is of great significance in the final diagnosis and pathogen identification.

Immunotherapy in Penile Squamous Cell Carcinoma: Present or Future? Multi-Target Analysis of Programmed Cell Death Ligand 1 Expression and Microsatellite Instability

Frontiers in medicine

2022 May 03

Montella, M;Sabetta, R;Ronchi, A;De Sio, M;Arcaniolo, D;De Vita, F;Tirino, G;Caputo, A;D'Antonio, A;Fiorentino, F;Facchini, G;Lauro, GD;Perdonà, S;Ventriglia, J;Aquino, G;Feroce, F;Borges Dos Reis, R;Neder, L;Brunelli, M;Franco, R;Zito Marino, F;
PMID: 35592855 | DOI: 10.3389/fmed.2022.874213

Penile cancer (PC) is an extremely rare malignancy, and the patients at advanced stages have currently limited treatment options with disappointing results. Immune checkpoint inhibitors anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) are currently changing the treatment of several tumors. Furthermore, the microsatellite instability (MSI) and the deficient mismatch repair system (dMMR) proteins represent predictive biomarkers for response to immune checkpoint therapy. Until present, few data have been reported related to PD-L1 expression and MSI in PC. The main aim of our study was the evaluation of PD-L1 expression in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) in immune cells and the analysis of dMMR/MSI status in a large series of PCs.A series of 72 PC, including 65 usual squamous cell carcinoma (USCC), 1 verrucous, 4 basaloid, 1 warty, and 1 mixed (warty-basaloid), was collected. Immunohistochemistry (IHC) was performed to assess PD-L1 expression using two different anti-PD-L1 antibodies (clone SP263 and SP142 Ventana) and MMR proteins expression using anti-MLH1, anti-PMS2, anti-MSH2, and anti-MSH6 antibodies. PCR analysis was performed for the detection of MSI status.Of the 72 PC cases analyzed by IHC, 45 (62.5%) cases were TC positive and 57 (79%) cases were combined positive score (CPS) using PDL1 SP263. In our cohort, TILs were present in 62 out of 72 cases (86.1%), 47 (75.8%) out of 62 cases showed positivity to PDL1 clone SP142. In our series, 59 cases (82%) had pMMR, 12 cases (16.7%) had lo-paMMR, and only 1 case (1.3%) had MMR. PCR results showed that only one case lo-paMMR was MSI-H, and the case dMMR by IHC not confirmed MSI status.Our findings showed that PD-L1 expression and MSI status represent frequent biological events in this tumor suggesting a rationale for a new frontier in the treatment of patients with PC based on the immune checkpoint inhibitors.
Discrepancy of p16 immunohistochemical expression and HPV RNA in penile cancer. A multiplex in situ hybridization/immunohistochemistry approach study

Infectious agents and cancer

2021 Mar 31

Zito Marino, F;Sabetta, R;Pagliuca, F;Brunelli, M;Aquino, G;Perdonà, S;Botti, G;Facchini, G;Fiorentino, F;Di Lauro, G;De Sio, M;De Vita, F;Toni, G;Borges Dos Reis, R;Neder, L;Franco, R;
PMID: 33789689 | DOI: 10.1186/s13027-021-00361-8

The high-risk human papillomavirus (HPV) infection represents one of the main etiologic pathways of penile carcinogenesis in approximately 30-50 % of cases. Several techniques for the detection of HPV are currently available including Polymerase chain reaction-based techniques, DNA and RNA in situ hybridization (ISH), p16 immunohistochemistry (IHC). The multiplex HPV RNA ISH/p16 IHC is a novel technique for the simultaneous detection of HPV E6/E7 transcripts and p16INK4a overexpression on the same slide in a single assay. The main aim of this study was to evaluate the discrepancy of p16 IHC expression relatively to HPV RNA ISH in penile cancer tissue. We collected a series of 60 PCs. HPV has been analysed through the RNA ISH, p16 IHC and the multiplex HPV RNA ISH/p16 IHC. The multiplex HPV RNA ISH /p16 IHC results in the series were in complete agreement with the previous results obtained through the classic p16 IHC and HPV RNA scope carried out on two different slides. The multiplex HPV RNA ISH /p16 IHC showed that HPV positivity in our series is more frequently in usual squamous cell carcinoma than in special histotypes (19 out of 60 - 15 %- versus 6 out of 60 - 10 %-), in high-grade than in moderate/low grade carcinomas (6 out of 60 - 10 %- versus 4 out of 60 - 6.7 %-). In addition, our data revealed that in 5 out of 20 cases with p16 high intensity expression is not associated with HPV RNA ISH positivity. Our findings emphasize that the use of p16 as a surrogate of HPV positivity was unsuccessful in approximatively 8 % of cases analysed in our series. Indeed, p16 IHC showed a sensitivity of 100 % and a specificity of 71 %, with a positive predictive value (PPV) of 54 % and a negative predictive value of 100 %; when considering high intensity, p16 IHC showed a sensitivity of 100 %, a specificity of 89 %, with a PPV of 75 % and NPV of 100 %. Since HPV positivity could represent a relevant prognostic and predictive value, the correct characterization offered by this approach appears to be of paramount importance.
Survival Rates for Patients With Barrett High-grade Dysplasia and Esophageal Adenocarcinoma With or Without Human Papillomavirus Infection

JAMA Network Open

2018 Aug 03

Rajendra S, Xuan W, Merrett N, Sharma P, Sharma P, Pavey D, Yang T, Santos LD, Sharaiha O, Pande G, Peter Cosman P, Wu X, Wang B.
PMID: - | DOI: 10.1001/jamanetworkopen.2018.1054


Abstract

Importance  
High-risk human papillomavirus (HPV) has been associated with Barrett dysplasia and esophageal adenocarcinoma. Nevertheless, the prognostic significance of esophageal tumor HPV status is unknown.

Objective  
To determine the association between HPV infection and related biomarkers in high-grade dysplasia or esophageal adenocarcinoma and survival.

Design, Setting, and Participants  
Retrospective case-control study. The hypothesis was that HPV-associated esophageal tumors would show a favorable prognosis (as in viral-positive head and neck cancers). Pretreatment biopsies were used for HPV DNA determination via polymerase chain reaction, in situ hybridization for E6 and E7 messenger RNA (mRNA), and immunohistochemistry for the proteins p16INK4A and p53. Sequencing of TP53 was also undertaken. The study took place at secondary and tertiary referral centers, with 151 patients assessed for eligibility and 9 excluded. The study period was from December 1, 2002, to November 28, 2017.

Main Outcomes and Measures  
Disease-free survival (DFS) and overall survival (OS).

Results  
Among 142 patients with high-grade dysplasia or esophageal adenocarcinoma (126 [88.7%] male; mean [SD] age, 66.0 [12.1] years; 142 [100%] white), 37 were HPV positive and 105 were HPV negative. Patients who were HPV positive mostly had high p16INK4A expression, low p53 expression, and wild-type TP53. There were more Tis, T1, and T2 tumors in HPV-positive patients compared with HPV-negative patients (75.7% vs 54.3%; difference, 21.4%; 95% CI, 4.6%-38.2%; P = .02). Mean DFS was superior in the HPV-positive group (40.3 vs 24.1 months; difference, 16.2 months; 95% CI, 5.7-26.8; P = .003) as was OS (43.7 vs 29.8 months; difference, 13.9 months; 95% CI, 3.6-24.3; P = .009). Recurrence or progression was reduced in the HPV-positive cohort (24.3% vs 58.1%; difference, −33.8%; 95% CI, −50.5% to −17.0%; P < .001) as was distant metastasis (8.1% vs 27.6%; difference, −19.5%; 95% CI, −31.8% to −7.2%; P = .02) and death from esophageal adenocarcinoma (13.5% vs 36.2%; difference, −22.7%; 95% CI, −37.0% to −8.3%; P = .01). Positive results for HPV and transcriptionally active virus were both associated with a superior DFS (hazard ratio [HR], 0.33; 95% CI, 0.16-0.67; P = .002 and HR, 0.44; 95% CI, 0.22-0.88; P = .02, respectively [log-rank test]). Positivity for E6 and E7 mRNA, high p16INK4Aexpression, and low p53 expression were not associated with improved DFS. On multivariate analysis, superior DFS was demonstrated for HPV (HR, 0.39; 95% CI, 0.18-0.85; P = .02), biologically active virus (HR, 0.36; 95% CI, 0.15-0.86; P = .02), E6 and E7 mRNA (HR, 0.36; 95% CI, 0.14-0.96; P = .04), and high p16 expression (HR, 0.49; 95% CI, 0.27-0.89; P = .02).

Conclusions and Relevance  
Barrett high-grade dysplasia and esophageal adenocarcinoma in patients who are positive for HPV are distinct biological entities with a favorable prognosis compared with viral-negative esophageal tumors. Confirmation of these findings in larger cohorts with more advanced disease could present an opportunity for treatment de-escalation in the hope of reducing toxic effects without deleteriously affecting survival.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?