Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for HPV-HR18

ACD can configure probes for the various manual and automated assays for HPV-HR18 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for HPV-HR18 (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (14)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV-HR18 (14) Apply HPV-HR18 filter
  • HPV-HR16 (3) Apply HPV-HR16 filter
  • HPV E6/E7 (2) Apply HPV E6/E7 filter

Product

  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter

Research area

  • (-) Remove HPV filter HPV (14)
  • Cancer (14) Apply Cancer filter
  • Infectious Disease (11) Apply Infectious Disease filter
  • Immunotherapy (1) Apply Immunotherapy filter

Category

  • Publications (14) Apply Publications filter
Automated RNA In Situ Hybridization for 18 High Risk Human Papilloma Viruses in Squamous Cell Carcinoma of the Head and Neck: Comparison With p16 Immunohistochemistry.

Appl Immunohistochem Mol Morphol.

2017 Aug 02

Drumheller B, Cohen C, Lawson D, Siddiqui MT.
PMID: 28777152 | DOI: 10.1097/PAI.0000000000000550

Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein. A direct clinical comparison between p16 IHC and an automated RNA ISH using 18 probes has not been established. Samples from 27 formalin-fixed, paraffin-embedded HNSCC cases from the Emory University Hospital archives were stained using 18 individual RNA ISH probes for high-risk HPV (RNAscope 2.5 LS Probe ) on a Leica autostainer (Buffalo Grove, IL) and were compared with p16 IHC. Two pathologists reviewed and reached a consensus on all interpretations. The RNAscope technique was positive in 89% (24/27) and the p16 IHC was positive in 78% (21/27). The RNAscope was negative in 11.1% of samples (3/27) and the p16 IHC-negative in 22.2% (6/27). The RNA ISH detected 100% of the p16-positive IHC-stained slides and had a concordance of 88.9% (24/27). This easy to interpret automated staining method for 18 high-risk HPV genotypes is a feasible replacement for the indirect p16 IHC method.

Human Papillomavirus-Related Multiphenotypic Sinonasal Carcinoma: A Case Report Documenting the Potential for Very Late Tumor Recurrence.

Head Neck Pathol.

2018 Feb 14

Shah AA, Lamarre ED, Bishop JA.
PMID: 29445997 | DOI: 10.1007/s12105-018-0895-5

Human papillomavirus (HPV)-related multiphenotypic sinonasal carcinoma is a peculiar sinonasal tract tumor that demonstrates features of both a surface-derived and salivary gland carcinoma. Implicit in its name, this tumor has a consistent association with high-risk HPV, particularly type 33. It was first described in 2013 under the designation of HPV-related carcinoma with adenoid cystic carcinoma-like features. However, since its initial description additional cases have emerged which demonstrate a wide morphologic spectrum and relatively indolent clinical behavior. Herein we report our experience with a case of HPV-related multiphenotypic sinonasal carcinoma that was initially classified as adenoid cystic carcinoma in the 1980s. The patient recurred after a 30-year disease free interval. RNA in situ hybridization confirmed the presence of high-risk HPV in both her recurrence and her initial tumor in the 1980s, which allowed for reclassification as HPV-related multiphenotypic sinonasal carcinoma. Our case adds to the literature of this relatively newly described entity and supports the indolent clinical behavior of this neoplasm but also demonstrates a potential for very late local recurrence.

Strong SOX10 expression in HPV-related multiphenotypic sinonasal carcinoma: report of six new cases validated by high-risk HPV mRNA in situ hybridization test.

Hum Pathol.

2018 Jul 30

Hsieh MS, Lee YH, Jin YT, Huang WC.
PMID: 30071233 | DOI: 10.1016/j.humpath.2018.07.026

HPV-related multiphenotypic sinonasal carcinoma (HMSC) is associated with high-risk human papillomavirus (HR-HPV) infection. Using HR-HPV mRNA in situ hybridization (ISH), we reported six new HMSC cases and compared their histopathology with that of sinonasal adenoid cystic carcinoma (ACC). Using p16 immunohistochemistry (IHC) and HR-HPV ISH, we retrospectively identified six HMSC cases. All HMSC cases were positive for HR-HPV mRNA ISH and p16 IHC. Two HMSC cases had overlying atypical squamous epithelium and one also had invasive squamous cell carcinoma (SCC). All HMSC were SOX10-positive whereas the overlying atypical squamous epithelium and the SCC were SOX10-negative. One atypical HMSC-like case was also identified which was positive for HR-HPV mRNA ISH, HR-HPV DNA ISH, SOX10 IHC, but negative for p16 IHC. This study showed that HR-HPV mRNA ISH was a useful tool to diagnose HMSC and had stronger signals than HR-HPV DNA ISH. HR-HPV E6/E7 mRNA could be identified in the overlying atypical squamous epithelium as well as the invasive SCC. A combination of p16 and SOX10 IHC will be a useful screening panel for HMSC followed by confirmatory HR-HPV mRNA ISH test.

Recommendations for determining HPV status in patients with oropharyngeal cancers under TNM8 guidelines: a two-tier approach

Br J Cancer

2019 Mar 20

Craig SG, Anderson LA, Schache AG, Moran M, Graham L, Currie K, Rooney K, Robinson M, Upile NS, Brooker R, Mesri M, Bingham V, McQuaid S, Jones T, McCance DJ, Salto-Tellez M, McDade SS and James JA
PMID: 30890775 | DOI: 10.1038/s41416-019-0414-9

BACKGROUND: TNM8 staging for oropharyngeal squamous cell carcinomas (OPSCC) surrogates p16 immunohistochemistry for HPV testing. Patients with p16+ OPSCC may lack HPV aetiology. Here, we evaluate the suitability of TNM8 staging for guiding prognosis in such patients. METHODS: HPV status was ascertained using p16 immunohistochemistry and high-risk HPV RNA and DNA in situ hybridisation. Survival by stage in a cohort of OPSCC patients was evaluated using TNM7/TNM8 staging. Survival of p16+/HPV- patients was compared to p16 status. RESULTS: TNM8 staging was found to improve on TNM7 (log rank p = 0.0190 for TNM8 compared with p = 0.0530 for TNM7) in p16+ patients. Patients who tested p16+ but were HPV- (n = 20) had significantly reduced five-year survival (33%) compared to p16+ patients (77%) but not p16- patients (35%). Cancer stage was reduced in 95% of p16+/HPV- patients despite having a mortality rate twice (HR 2.66 [95% CI: 1.37-5.15]) that of p16+/HPV+ patients under new TNM8 staging criteria. CONCLUSION: Given the significantly poorer survival of p16+/HPV- OPSCCs, these data provide compelling evidence for use of an HPV-specific test for staging classification. This has particular relevance in light of potential treatment de-escalation that could expose these patients to inappropriately reduced treatment intensity as treatment algorithms evolve.
Nonuniform Distribution of High-risk Human Papillomavirus in Squamous Cell Carcinomas of the Oropharynx

Am J Surg Pathol.

2017 Dec 01

Gelwan E, Malm IJ, Khararjian A, Fakhry C, Bishop JA, Westra WH.
PMID: 28877058 | DOI: 10.1097/PAS.0000000000000929

The oral cavity and oropharynx have historically been viewed as a single anatomic compartment of the head and neck. The practice of combining the oral cavity and oropharynx has recently been revised, largely owing to the observation that human papillomavirus (HPV)-related carcinogenesis has a strong predilection for the oropharynx but not the oral cavity. The purpose of this study was to determine whether HPV is evenly distributed across squamous cell carcinomas of the oropharynx including those sites that do not harbor tonsillar tissues such as the soft palate. A search of the medical records of the Johns Hopkins Hospital identified 32 primary squamous cell carcinomas of the soft palate (n=31) and posterior pharyngeal wall (n=1). All were evaluated with p16 immunohistochemistry and high-risk HPV in situ hybridization (ISH) (29 by RNA ISH and 3 by DNA ISH). For comparison, we also reviewed the medical records to obtain the HPV status of patients who had undergone HPV testing of primary tonsillar carcinomas over the same time interval as part of their clinical care. High-risk HPV as detected by ISH was present in just 1 (3.1%) of the 32 oropharyngeal squamous cell carcinomas, including 1 of 2 p16-positive carcinomas. The difference in HPV detection rates between tonsillar and nontonsillar sites was significant (1/32, 3.1% vs. 917/997, 92%; P<0.0001). HPV is not frequently detected in squamous cell carcinomas arising from nontonsillar regions of the oropharynx. Indeed, squamous cell carcinomas of the soft palate more closely resemble those arising in the oral cavity than those arising in areas of the oropharynx harboring tonsillar tissue. This finding not only further sharpens our understanding of site-specific targeting by HPV, but may have practical implications regarding HPV testing and even the way the oral vault is oncologically compartmentalized to partition HPV-positive from HPV-negative cancers.

Stromal invasion pattern identifies patients at lowest risk of lymph node metastasis in HPV-associated endocervical adenocarcinomas, but is irrelevant in adenocarcinomas unassociated with HPV.

Gynecol Oncol.

2018 May 30

Stolnicu S, Barsan I, Hoang L, Patel P, Terinte C, Pesci A, Aviel-Ronen S, Kiyokawa T, Alvarado-Cabrero I, Oliva E, Park KJ, Abu-Rustum NR, Pike MC, Soslow RA.
PMID: 29859673 | DOI: 10.1016/j.ygyno.2018.04.570

Abstract

OBJECTIVE:

The Silva invasion pattern-based classification system stratifies endocervical adenocarcinomas (ECAs) into 3 categories corresponding to risk of metastasis and recurrence, but has only been evaluated for HPV-associated ECAs of usual type. We examined whether the Silva system is applicable to all endocervical adenocarcinomas, especially those not associated with HPV.

METHODS:

Complete slide sets from 341 surgical specimens of ECA were collected from 7 institutions worldwide. All specimens were associated with clinical records covering at least 5 years of follow-up. Tumors were classified as HPV-associated (HPVA) or not (NHPVA) by both morphology and detection of HPV using in situ hybridization. Recurrence and survival were analyzed by multivariate Mantel-Haenszel methods.

RESULTS:

Most specimens (292; 85.6%) were HPVA, while 49 (14.3%) were NHPVA. All NHPVAs were Silva pattern C, while 76.0% of HPVAs were pattern C, 14.7% pattern A, and 9.3% pattern B. Including both HPVAs and NHPVAs, lymphovascular invasion (LVI) was detected in 0% of pattern A, 18.5% of pattern B and 62.6% of pattern C cases (p < 0.001). None of the pattern A or B cases were associated with lymph node metastases (LNM), in contrast to pattern C cases (21.8%). Among patients with Silva pattern C ECA, those with HPVA tumors had a lower recurrence rate and better survival than those with NHPVA; however, when adjusted for stage at diagnosis, the difference in recurrence and mortality was small and not statistically significant.

CONCLUSIONS:

Application of the Silva system is only relevant in HPVA cervical adenocarcinoma.

Human papillomavirus exposure and sexual behavior are significant risk factors for Barrett's dysplasia/esophageal adenocarcinoma.

Dis Esophagus.

2018 Jun 21

Wong MYW, Wang B, Yang A, Khor A, Xuan W, Rajendra S.
PMID: 29931323 | DOI: 10.1093/dote/doy051

Given the comparable strains of high-risk human papillomavirus (HPV) present in a subset of Barrett's dysplasia and esophageal adenocarcinoma as in head and neck squamous cell carcinomas and the anatomical proximity of both lesions, we hypothesized that oral sex may increase the risk of Barrett's dysplasia/esophageal adenocarcinoma. Therefore, we compared the sexual behavior of patients with Barrett's dysplasia/esophageal adenocarcinoma and controls (hospital, reflux, and Barrett's metaplasia) to explore a plausible mechanism of viral transmission to the lower esophagus. A hospital-based case-control study involving 36 Barrett's dysplasia/esophageal adenocarcinoma subjects and 55 controls with known HPV DNA status and markers of transcriptional activity i.e p16INK4A and E6/E7 mRNA of the esophageal epithelium was conducted to evaluate differences in sexual history (if any). Barrett's dysplasia/esophageal adenocarcinoma patients were more likely than controls to be positive for HPV DNA (18 of 36, 50% vs. 6/55, 11%, p for trend <0.0001), be male (P = 0.001) and in a relationship (P = 0.02). Viral genotypes identified were HPV 16 (n = 14), 18 (n = 2), 11 (n = 1) and 6 (n = 1). HPV exposure conferred a significantly higher risk for Barrett's dysplasia/esophageal adenocarcinoma as compared with hospital/reflux/Barrett's metaplasia controls (OR = 6.8, 95% CI: 2.1-23.1, adjusted P = 0.002). On univariate analysis, ≥6 lifetime oral sex partners were significantly associated with dysplastic Barrett's esophagus and adenocarcinoma (OR, 4.0; 95% CI: 1.2-13.7, P = 0.046). After adjustment for confounders, HPV exposure and men with ≥2 lifetime sexual partners were at significant risk for Barrett's dysplasia/esophageal adenocarcinoma. If these initial findings can be confirmed in larger studies, it could lead to effective prevention strategies in combating some of the exponential increase in the incidence of esophageal adenocarcinoma in the West.

Oral Human Papillomavirus Infection and Head and Neck Squamous Cell Carcinoma in Rural Northwest Cameroon.

SAGE Publications (2019)

2019 Jan 04

Rettig EM, Gooi Z, Bardin R, Bogale M, Rooper L, Acha E, Koch WM.
| DOI: 10.1177/2473974X18818415

Abstract Objective. Oral human papillomavirus (HPV) infection is the precursor for a growing subset of oropharyngeal squamous cell carcinomas (OPSCCs) in the developed world. This study was designed to characterize oral HPV infection and OPSCC in a region with high rates of HPV-driven cervical cancer. Study Design. Cross-sectional cohort study, retrospective case series. Setting. Northwest Cameroon referral hospital. Subjects and Methods. Individuals infected with human immunodeficiency virus attending an outpatient clinic were evaluated for oral HPV infection with oral swabs or rinses that were tested for 51 HPV types. HNSCCs diagnosed and/or treated at the same hospital from 2011 to 2017 were retrospectively reviewed to ascertain demographic and tumor characteristics, and available OPSCCs were tested for HPV. Results. The oral HPV infection study population comprised 101 participants. Most (69%) were female and neversmokers (84%). Participants had median 4 lifetime sexual partners (interquartile range, 3-7; range, 1-100). Five participants (5%) had oral HPV infection; one had 2 HPV types. HPV types detected were HPV68 (n = 2), HPV82 (n = 2), HPV32 (n = 1), and unknown (n = 1). No significant demographic or behavioral differences were detected among individuals with vs without oral HPV infection. OPSCCs comprised just 8% (n = 11) of 131 HNSCCs in the retrospective study population. Two of 7 OPSCCs were HPV positive. Conclusion. The low prevalence of OPSCC observed in northwest Cameroon together with the rarity of oral HPV infection suggests low rates of HPV-driven oropharyngeal carcinogenesis in the region. Future research should examine how geographic differences in oral HPV infection are influenced by cultural norms and affect HPV-OPSCC epidemiology
Therapeutic efficacy of a VSV-GP-based human papilloma virus vaccine in a murine cancer model

Journal of molecular biology

2023 Apr 20

Riepler, L;Frommelt, LS;Wilmschen-Tober, S;Mbuya, W;Held, K;Volland, A;von Laer, D;Geldmacher, C;Kimpel, J;
PMID: 37086948 | DOI: 10.1016/j.jmb.2023.168096

Human papilloma virus (HPV) infections are associated with almost all cervical cancers and to a lower extend also with anogenital or oropharyngeal cancers. HPV proteins expressed in HPV-associated tumors are attractive antigens for cancer vaccination strategies as self-tolerance, which is associated with most endogenous tumor-associated antigens, does not need to be overcome. In this study, we generated a live attenuated cancer vaccine based on the chimeric vesicular stomatitis virus VSV-GP, which has previously proven to be a potent vaccine vector and oncolytic virus. Genes at an earlier position in the genome more to the 3' end are expressed stronger compared to genes located further downstream. By inserting an HPV16-derived antigen cassette consisting of E2, E6 and E7 into VSV-GP either at first (HPVp1) or fifth (HPVp5) position in VSV-GP's genome we aimed to analyze the effect of vaccine antigen position and consequently expression level on viral fitness, immunogenicity, and anti-tumoral efficacy in a syngeneic mouse tumor model. HPVp1 expressed higher amounts of HPV antigens compared to HPVp5 in vitro but had a slightly delayed replication kinetic which overall translated into increased HPV-specific T cell responses upon vaccination of mice. Immunization with both vectors protected mice in prophylactic and in therapeutic TC-1 tumor models with HPVp1 being more effective in the prophylactic setting. Taken together, VSV-GP is a promising candidate as therapeutic HPV vaccine and first position of the vaccine antigen in a VSV-derived vector seems to be superior to fifth position.
Detection of HPV infection in urothelial carcinoma using RNAscope: Clinicopathological characterization

Cancer medicine

2021 Jun 23

Musangile, FY;Matsuzaki, I;Okodo, M;Shirasaki, A;Mikasa, Y;Iwamoto, R;Takahashi, Y;Kojima, F;Murata, SI;
PMID: 34164940 | DOI: 10.1002/cam4.4091

Human papillomavirus (HPV) is a well-established mucosotropic carcinogen, but its impact on urothelial neoplasm is unclear. We aimed to clarify the clinical and pathological features of HPV-related urothelial carcinoma (UC).Tissue samples of 228 cases of UC were obtained from the bladder, upper and lower urinary tract, and metastatic sites to construct a tissue microarray. The samples were analyzed for the presence of HPV by a highly sensitive and specific mRNA in situ hybridization (RISH) technique (RNAscope) with a probe that can detect 18 varieties of high-risk HPV. We also conducted immunohistochemistry (IHC) for a major HPV capsid antibody and DNA-PCR.The HPV detection rates varied among the methods; probably due to low HPV copy numbers in UC tissues and the insufficient specificity and sensitivity of the IHC and PCR assays. The RISH method had the highest accuracy and identified HPV infection in 12 (5.2%) of the cases. The histopathological analysis of the HPV-positive UC showed six cases of usual type UC, five cases of UC with squamous differentiation (UC_SqD), and one case of micropapillary UC. The HPV detection rate was six-fold higher in the cases of UC_SqD than in the other variants of UC (odds ratio [OR] =8.9, p = 0.002). In addition, HPV infection showed a significant association with tumor grade (OR =9.8, p = 0.03) and stage (OR =4.7, p = 0.03) of UC. Moreover, the metastatic rate was higher in HPV-positive than in negative UC (OR =3.4).These data indicate that although the incidence of HPV infection in UC is low, it is significantly associated with squamous differentiation and poor prognosis. Furthermore, our observations show that RNAscope is an ideal method for HPV detection in UC compared with the other standard approaches such as IHC and PCR assays.
Morphoproteomics, E6/E7 in-situ hybridization, and biomedical analytics define the etiopathogenesis of HPV-associated oropharyngeal carcinoma and provide targeted therapeutic options.

J Otolaryngol Head Neck Surg.

2017 Aug 17

Brown RE, Naqvi S, McGuire MF, Buryanek J, Karni RJ.
PMID: 28818106 | DOI: 10.1186/s40463-017-0230-2

Abstract

BACKGROUND:

Human papillomavirus (HPV) has been identified as an etiopathogenetic factor in oropharyngeal squamous cell carcinoma. The HPV E6 and E7 oncogenes are instrumental in promoting proliferation and blocking differentiation leading to tumorigenesis. Although surgical intervention can remove such tumors, the potential for an etiologic field effect with recurrent disease is real. A downstream effector of E7 oncoprotein, enhancer of zeste homolog 2 (EZH2), is known to promote proliferation and to pose a block in differentiation and in turn, could lead to HPV-induced malignant transformation. However, the EZH2 pathway is amenable to low toxicity therapies designed to promotedifferentiation to a more benign state and prevent recurrent disease by inhibiting the incorporation of HPV into the genome. This is the first study using clinical specimens to demonstrate EZH2 protein expression in oropharyngeal carcinoma (OPC).

METHODS:

The study included eight patients with oropharyngeal carcinoma, confirmed p16INK4a- positive by immunohistochemistry (IHC). The tissue expression of E6/E7 messenger RNA (mRNA) was measured by RNAscope™ in-situ hybridization technology. Expression of EZH2, Ki-67, and mitotic indices were assessed by morphoproteomic analysis. Biomedical analytics expanded the results with data from Ingenuity Pathway Analysis (IPA) and KEGG databases to construct a molecular network pathway for further insights.

RESULTS:

Expression of E6 and E7 oncogenes in p16INK4a- positive oropharyngeal carcinoma was confirmed. EZH2 and its correlates, including elevated proliferation index (Ki-67) and mitotic progression were also present. Biomedical analytics validated the relationship between HPV- E6 and E7 and the expression of the EZH2 pathway.

CONCLUSION:

There is morphoproteomic and mRNA evidence of the association of p16INK4a-HPV infection with the E6 and E7 oncogenes and the expression of EZH2, Ki-67 and mitotic progression in oropharyngeal carcinoma. The molecular network biology was confirmed by biomedical analytics as consistent with published literature. This is significant because the biology lends itself to targeted therapeutic options using metformin, curcumin, celecoxib and sulforaphane as therapeutic strategies to prevent progression or recurrence of disease.

[Clinicopathological characteristics of HPV(+) oropharyngeal squamous cell carcinoma].

Chinese journal of pathology

2019 Feb 02

Zhao YH, Bai YP, Mao ML, Zhang H, Zhao XL, Yang DM, Wan HF, Liu HG.
PMID: 30695865 | DOI: 10.3760/cma.j.issn.0529-5807.2019.02.010

Objective: To observe the clinicopathologic features of oropharyngeal squamous cell carcinoma associated with human papilloma virus (OPSCC-HPV) and discuss the role and value of different in situ hybridization (ISH) detection methods for HPV in pathologic diagnosis. Methods: Fifteen cases of OPSCC-HPV were collected from Department of Pathology, Beijing Tongren Hospital, Capital Medical University from January 2016 to August 2018. These cases were diagnosed in accordance with the WHO classification of head and neck tumors. The histopathologic features and the clinicopathologic data were retrospectively analyzed. Immunohistochemistry (two-step EnVision method) was done to evaluate the expression of p16, Ki-67 and p53. ISH was used to detect HPV DNA (6/11 and 16/18). RNAscope technology was used to evaluate the presence of HPV mRNAs (16 and 18). Results: The mean age for the 15 patients (8 males, 7 females) was 47 years (range from 30 to 69 years). OPSCC-HPV typically presentedat an advanced clinical stage, six patients had cervical lymphadenopathy (large and cystic), seven had tonsillar swelling, one had tumor at base of tongue, and one had odynophagia. Microscopically the tumors exhibited distinctive non-keratinizing squamous cell carcinoma morphology. Cervical nodal metastases were large and cystic, with thickening of lymph node capsules. OPSCC-HPV raised from crypt epithelium and extended beneath the tonsillar surface epithelial lining as nests and lobules, often with central necrosis. Tumor cells displayed a high N: C ratio, and high mitotic and apoptotic rates. Tumor nests are often embedded within lymphoid stroma, and may be infiltrated by lymphoid cells.Fifteen cases (15/15) were strongly positive for p16; Ki-67 index were 60%-90%; they were focally positive or negative for p53. Ten cases (10/10) were negative for HPV 6/11 DNA, and one case(1/10) was focally positive for HPV16/18 DNA. Eleven cases (11/11) were strongly positive for HPV16 mRNA, one case was focally positive for HPV18 mRNA. Conclusions: OPSCC-HPV is a pathologically and clinically distinct form of head and neck squamous cell carcinoma. OPSCC-HPV is associated with high-risk HPV (type 16) in all cases. Detection of high-risk HPV16 mRNA by RNAscope is of great significance in the final diagnosis and pathogen identification.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?