Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for HIV-1

ACD can configure probes for the various manual and automated assays for HIV-1 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for HIV-1 (1152)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (62)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HIV-1 (19) Apply HIV-1 filter
  • TBD (16) Apply TBD filter
  • HIV (7) Apply HIV filter
  • HIV1 (3) Apply HIV1 filter
  • SIV (2) Apply SIV filter
  • GAPDH (1) Apply GAPDH filter
  • IL34 (1) Apply IL34 filter
  • IL-8 (1) Apply IL-8 filter
  • IFN-γ (1) Apply IFN-γ filter
  • IL-17A (1) Apply IL-17A filter
  • Il-6 (1) Apply Il-6 filter
  • SIVMM32H (1) Apply SIVMM32H filter
  • IL-1β (1) Apply IL-1β filter
  • Slc12a3 (1) Apply Slc12a3 filter
  • SIVDeltaB670 (1) Apply SIVDeltaB670 filter
  • V-HIV Clade B anti-sense (1) Apply V-HIV Clade B anti-sense filter
  • CD30 (1) Apply CD30 filter
  • vpr (1) Apply vpr filter
  • HIV-1 clade B (1) Apply HIV-1 clade B filter
  • HIV-1  (1) Apply HIV-1  filter
  • subtype C HIV-1 (1) Apply subtype C HIV-1 filter
  • influenza PB1 (1) Apply influenza PB1 filter
  • HIV-1 gag-pol (1) Apply HIV-1 gag-pol filter
  • V-HIV1-CladeB (1) Apply V-HIV1-CladeB filter
  • SHIVBG505 (gag-pol (1) Apply SHIVBG505 (gag-pol filter
  • vif-vpu-nef) (1) Apply vif-vpu-nef) filter
  • HIV-1 clade B anti-sense (1) Apply HIV-1 clade B anti-sense filter
  • HIV-1 gag/pol (1) Apply HIV-1 gag/pol filter
  • HIV-1 gag (1) Apply HIV-1 gag filter
  • HERV-Kenv-C1 (1) Apply HERV-Kenv-C1 filter
  • HIV-1 gag-pol-C2 (1) Apply HIV-1 gag-pol-C2 filter

Product

  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.0 Assay (7) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (5) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (5) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (4) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (2) Apply TBD filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • HIV (24) Apply HIV filter
  • Infectious Disease (21) Apply Infectious Disease filter
  • Inflammation (9) Apply Inflammation filter
  • Neuroscience (6) Apply Neuroscience filter
  • Infectious (4) Apply Infectious filter
  • Stem cell (2) Apply Stem cell filter
  • Animal Models (1) Apply Animal Models filter
  • Infectious Disease: HIV (1) Apply Infectious Disease: HIV filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (62) Apply Publications filter
Crucial Role of Central Nervous System as a Viral Anatomical Compartment for HIV-1 Infection

Microorganisms

2021 Dec 08

Borrajo, A;Svicher, V;Salpini, R;Pellegrino, M;Aquaro, S;
PMID: 34946138 | DOI: 10.3390/microorganisms9122537

The chronic infection established by the human immunodeficiency virus 1 (HIV-1) produces serious CD4+ T cell immunodeficiency despite the decrease in HIV-1 ribonucleic acid (RNA) levels and the raised life expectancy of people living with HIV-1 (PLWH) through treatment with combined antiretroviral therapies (cART). HIV-1 enters the central nervous system (CNS), where perivascular macrophages and microglia are infected. Serious neurodegenerative symptoms related to HIV-associated neurocognitive disorders (HAND) are produced by infection of the CNS. Despite advances in the treatment of this infection, HAND significantly contribute to morbidity and mortality globally. The pathogenesis and the role of inflammation in HAND are still incompletely understood. Principally, growing evidence shows that the CNS is an anatomical reservoir for viral infection and replication, and that its compartmentalization can trigger the evolution of neurological damage and thus make virus eradication more difficult. In this review, important concepts for understanding HAND and neuropathogenesis as well as the viral proteins involved in the CNS as an anatomical reservoir for HIV infection are discussed. In addition, an overview of the recent advancements towards therapeutic strategies for the treatment of HAND is presented. Further neurological research is needed to address neurodegenerative difficulties in people living with HIV, specifically regarding CNS viral reservoirs and their effects on eradication.
Visualization of HIV-1 reservoir: an imaging perspective

Current opinion in HIV and AIDS

2021 Jul 01

Chapon, C;Moysi, E;Naninck, T;Mayet, C;Petrovas, C;
PMID: 34039844 | DOI: 10.1097/COH.0000000000000691

The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations.CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease.Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.
SERINC5 restricts influenza virus infectivity

PLoS pathogens

2022 Oct 01

Zhao, F;Xu, F;Liu, X;Hu, Y;Wei, L;Fan, Z;Wang, L;Huang, Y;Mei, S;Guo, L;Yang, L;Cen, S;Wang, J;Liang, C;Guo, F;
PMID: 36223419 | DOI: 10.1371/journal.ppat.1010907

SERINC5 is a multi-span transmembrane protein that is incorporated into HIV-1 particles in producing cells and inhibits HIV-1 entry. Multiple retroviruses like HIV-1, equine infectious anemia virus and murine leukemia virus are subject to SERINC5 inhibition, while HIV-1 pseudotyped with envelope glycoproteins of vesicular stomatitis virus and Ebola virus are resistant to SERINC5. The antiviral spectrum and the underlying mechanisms of SERINC5 restriction are not completely understood. Here we show that SERINC5 inhibits influenza A virus infection by targeting virus-cell membrane fusion at an early step of infection. Further results show that different influenza hemagglutinin (HA) subtypes exhibit diverse sensitivities to SERINC5 restriction. Analysis of the amino acid sequences of influenza HA1 strains indicates that HA glycosylation sites correlate with the sensitivity of influenza HA to SERINC5, and the inhibitory effect of SERINC5 was lost when certain HA glycosylation sites were mutated. Our study not only expands the antiviral spectrum of SERINC5, but also reveals the role of viral envelope glycosylation in resisting SERINC5 restriction.
Human Interleukin-34 facilitates microglia-like cell differentiation and persistent HIV-1 infection in humanized mice.

Mol Neurodegener.

2019 Mar 05

Mathews S, Branch Woods A, Katano I, Makarov E, Thomas MB, Gendelman HE, Poluektova LY, Ito M, Gorantla S.
PMID: 30832693 | DOI: 10.1186/s13024-019-0311-y

Abstract

BACKGROUND:

Microglia are the principal innate immune defense cells of the centeral nervous system (CNS) and the target of the human immunodeficiency virus type one (HIV-1). A complete understanding of human microglial biology and function requires the cell's presence in a brain microenvironment. Lack of relevant animal models thus far has also precluded studies of HIV-1 infection. Productive viral infection in brain occurs only in human myeloid linage microglia and perivascular macrophages and requires cells present throughout the brain. Once infected, however, microglia become immune competent serving as sources of cellular neurotoxic factors leading to disrupted brain homeostasis and neurodegeneration.

METHODS:

Herein, we created a humanized bone-marrow chimera producing human "microglia like" cells in NOD.Cg-PrkdcscidIl2rgtm1SugTg(CMV-IL34)1/Jic mice. Newborn mice were engrafted intrahepatically with umbilical cord blood derived CD34+ hematopoietic stem progenitor cells (HSPC). After 3 months of stable engraftment, animals were infected with HIV-1ADA, a myeloid-specific tropic viral isolate. Virologic, immune and brain immunohistology were performed on blood, peripheral lymphoid tissues, and brain.

RESULTS:

Human interleukin-34 under the control of the cytomegalovirus promoter inserted in NSG mouse strain drove brain reconstitution of HSPC derived peripheral macrophages into microglial-like cells. These human cells expressed canonical human microglial cell markers that included CD14, CD68, CD163, CD11b, ITGB2, CX3CR1, CSFR1, TREM2 and P2RY12. Prior restriction to HIV-1 infection in the rodent brain rested on an inability to reconstitute human microglia. Thus, the natural emergence of these cells from ingressed peripheral macrophages to the brain could allow, for the first time, the study of a CNS viral reservoir. To this end we monitored HIV-1 infection in a rodent brain. Viral RNA and HIV-1p24 antigens were readily observed in infected brain tissues. Deep RNA sequencing of these infected mice and differential expression analysis revealed human-specific molecular signatures representative of antiviral and neuroinflammatory responses.

CONCLUSIONS:

This humanized microglia mouse reflected human HIV-1 infection in its known principal reservoir and showed the development of disease-specific innate immune inflammatory and neurotoxic responses mirroring what can occur in an infected human brain.

Macrophages but not Astrocytes Harbor HIV DNA in the Brains of HIV-1-Infected Aviremic Individuals on Suppressive Antiretroviral Therapy.

J Neuroimmune Pharmacol.

2018 Sep 07

Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q, Kim WK.
PMID: 30194646 | DOI: 10.1007/s11481-018-9809-2

The question of whether the human brain is an anatomical site of persistent HIV-1 infection during suppressive antiretroviral therapy (ART) is critical, but remains unanswered. The presence of virus in the brains of HIV patients whose viral load is effectively suppressed would demonstrate not only the potential for CNS to act as an anatomical HIV reservoir, but also the urgent need to understand the factors contributing to persistent HIV behind the blood-brain barrier. Here, we investigated for the first time the presence of cells harboring HIV DNA and RNA in the brains from subjects with undetectable plasma viral load and sustained viral suppression, as identified by the National NeuroAIDS Tissue Consortium. Using new, highly sensitive in situ hybridization techniques, RNAscope and DNAscope, in combination with immunohistochemistry, we were able to detect HIV-1 in the brains of all virally suppressed cases and found that brain macrophages and microglia, but not astrocytes, were the cells harboring HIV DNA in the brain. This study demonstrated that HIV reservoirs persist in brain macrophages/microglia during suppressive ART, which cure/treatment strategies will need to focus on targeting.

Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys

Cell reports

2022 Jan 04

Pegu, A;Xu, L;DeMouth, ME;Fabozzi, G;March, K;Almasri, CG;Cully, MD;Wang, K;Yang, ES;Dias, J;Fennessey, CM;Hataye, J;Wei, RR;Rao, E;Casazza, JP;Promsote, W;Asokan, M;McKee, K;Schmidt, SD;Chen, X;Liu, C;Shi, W;Geng, H;Foulds, KE;Kao, SF;Noe, A;Li, H;Shaw, GM;Zhou, T;Petrovas, C;Todd, JP;Keele, BF;Lifson, JD;Doria-Rose, NA;Koup, RA;Yang, ZY;Nabel, GJ;Mascola, JR;
PMID: 34986348 | DOI: 10.1016/j.celrep.2021.110199

Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.
PP 6.2- 00106 CAR/CXCR5 T cells contact HIV vRNA+ cells in HIV-infected humanized DRAGA mice

Journal of Virus Eradication

2022 Dec 01

Pumtang-On, P;Sevcik, E;Davey, B;Goodarzi, N;Vezys, V;Casares, S;Rao, M;Skinner, P;
| DOI: 10.1016/j.jve.2022.100255

Background: HIV-specific chimeric antigen receptor T (CAR T) cells are being developed as a potential approach towards curing HIV infection. During infection, HIV replication is concentrated in B cell follicles, and viral reservoirs such as B cell follicles are a significant barrier to an HIV cure. We developed HIV-specific CAR T cells expressing the follicular homing receptor CXCR5 (CAR/CXCR5 T cells) to target follicular HIV reservoirs. We hypothesized after infusion of CAR/CXCR5 T cells in humanized HIV-infected DRAGA mice, CAR/CXCR5 T cells would accumulate in lymphoid follicles, make direct contact with HIV+ cells, lead to reductions in HIV viral loads, and preserve human CD4 T cells. Methods: Fourteen female humanized DRAGA mice were included in this study. Twelve mice were infected with 10 000 TCID50 of HIV-1 BaL. Levels of HIV-1 plasma viral loads and CD4 T cells were monitored using qRT-PCR and flow cytometry. Two spleens from uninfected mice were used to produce transduced CAR/CXCR5 T cells and transduced cell products (2×105 cells/gram) were infused in six HIV-infected mice. RNAscope combined with immunohistochemistry was used to visualize locations and quantities of CAR/CXCR5 T cells and HIV vRNA+ cells in lymphoid tissues. Results: All mice were HIV-1 detectable nbefore infusion of CAR/CXCR5 T cells. High levels of CAR/CXCR5 T cells and HIV vRNA+ cells were detected at 6 days post-infusion in lymphoid tissues. Many CAR/CXCR5 T cells were found in direct contact with HIV vRNA+ cells. However, many CAR/CXCR5 T cells, presumably CD4+ cells, were HIV vRNA+ and likely spreading infection. No differences in HIV plasma viral loads or CD4 T cell counts were observed between control and treated animals. Conclusions: These studies support the use of the HIV-infected DRAGA mouse model for HIV cure research studies. Using this model, we showed CAR/CXCR5 T cells accumulate in follicle-like structures with HIV vRNA+ cells and come in contact with vRNA+ cells. The simultaneous detection of CAR T cells with high levels of HIV vRNA+ cells indicates the need for HIV-resistant CAR T cells. These preliminary findings demonstrate the HIV-infected DRAGA mouse model is extremely valuable for evaluating HIV cure approaches.
New Latency Reversing Agents for HIV-1 Cure: Insights from Nonhuman Primate Models

Viruses

2021 Aug 06

Bricker, KM;Chahroudi, A;Mavigner, M;
PMID: 34452425 | DOI: 10.3390/v13081560

Antiretroviral therapy (ART) controls human immunodeficiency virus 1 (HIV-1) replication and prevents disease progression but does not eradicate HIV-1. The persistence of a reservoir of latently infected cells represents the main barrier to a cure. "Shock and kill" is a promising strategy involving latency reversing agents (LRAs) to reactivate HIV-1 from latently infected cells, thus exposing the infected cells to killing by the immune system or clearance agents. Here, we review advances to the "shock and kill" strategy made through the nonhuman primate (NHP) model, highlighting recently identified latency reversing agents and approaches such as mimetics of the second mitochondrial activator of caspase (SMACm), experimental CD8+ T cell depletion, immune checkpoint blockade (ICI), and toll-like receptor (TLR) agonists. We also discuss the advantages and limits of the NHP model for HIV cure research and methods developed to evaluate the efficacy of in vivo treatment with LRAs in NHPs.
Advancing our understanding of HIV co-infections and neurological disease using the humanized mouse

Retrovirology

2021 Jun 16

Endsley, JJ;Huante, MB;Naqvi, KF;Gelman, BB;Endsley, MA;
PMID: 34134725 | DOI: 10.1186/s12977-021-00559-z

Humanized mice have become an important workhorse model for HIV research. Advances that enabled development of a human immune system in immune deficient mouse strains have aided new basic research in HIV pathogenesis and immune dysfunction. The small animal features facilitate development of clinical interventions that are difficult to study in clinical cohorts, and avoid the high cost and regulatory burdens of using non-human primates. The model also overcomes the host restriction of HIV for human immune cells which limits discovery and translational research related to important co-infections of people living with HIV. In this review we emphasize recent advances in modeling bacterial and viral co-infections in the setting of HIV in humanized mice, especially neurological disease, and Mycobacterium tuberculosis and HIV co-infections. Applications of current and future co-infection models to address important clinical and research questions are further discussed.
Single-cell RNA-seq analysis reveals compartment-specific heterogeneity and plasticity of microglia

iScience

2021 Mar 01

Zheng, J;Ru, W;Adolacion, J;Spurgat, M;Liu, X;Yuan, S;Liang, R;Dong, J;Potter, A;Potter, S;Chen, K;Chen, R;Varadarajan, N;Tang, S;
| DOI: 10.1016/j.isci.2021.102186

Microglia are ubiquitous central nervous system (CNS)-resident macrophages that maintain homeostasis of neural tissues and protect them from pathogen attacks. Yet, their differentiation in different compartments remains elusive. We performed single-cell RNA-seq to compare microglial subtypes in the cortex and the spinal cord. A multi-way comparative analysis was carried out on samples from C57/BL and HIV gp120 transgenic mice at two, four, and eight months of age. The results revealed overlapping but distinct microglial populations in the cortex and the spinal cord. The differential heterogeneity of microglia in these CNS regions was further suggested by their disparity of plasticity in response to life span progression and HIV-1 pathogenic protein gp120. Our findings indicate that microglia in different CNS compartments are adapted to their local environments to fulfill region-specific biological functions.
Evaluating a New Class of AKT/mTOR Activators for HIV Latency Reversing Activity Ex Vivo and In Vivo

Journal of virology

2021 Feb 03

Gramatica, A;Schwarzer, R;Brantley, W;Varco-Merth, B;Sperber, HS;Hull, PA;Montano, M;Migueles, SA;Rosenthal, D;Hogan, LE;Johnson, JR;Packard, TA;Grimmett, ZW;Herzig, E;Besnard, E;Nekorchuk, M;Hsiao, F;Deeks, SG;Snape, M;Kiernan, B;Roan, NR;Lifson, JD;Estes, JD;Picker, LJ;Verdin, E;Krogan, NJ;Henrich, TJ;Connors, M;Ott, M;Pillai, SK;Okoye, AA;Greene, WC;
PMID: 33536176 | DOI: 10.1128/JVI.02393-20

An ability to activate latent HIV-1 expression could benefit many HIV cure strategies, but the first generation of latency reversing agents (LRAs) has proven disappointing. We evaluated AKT/mTOR activators as a potential new class of LRAs. Two glycogen synthase kinase-3 inhibitors (GSK-3i's), SB-216763 and tideglusib (the latter already in phase II clinical trials) that activate AKT/mTOR signaling were tested. These GSK-3i's reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy (ART) in the absence of T cell activation, release of inflammatory cytokines, cell toxicity, or impaired effector function of cytotoxic T lymphocytes or NK cells. However, when administered in vivo to SIV-infected rhesus macaques on suppressive ART, tideglusib exhibited poor pharmacodynamic properties and resulted in no clear evidence of significant SIV latency reversal. Whether alternative pharmacological formulations or combinations of this drug with other classes of LRAs will lead to an effective in vivo latency-reversing strategy remains to be determined.IMPORTANCE If combined with immune therapeutics, latency reversing agents (LRAs) have the potential to reduce the size of the reservoir sufficiently that an engineered immune response can control the virus in the absence of antiretroviral therapy. We have identified a new class of LRAs that do not induce T-cell activation and that are able to potentiate, rather than inhibit, CD8+ T and NK cell cytotoxic effector functions. This new class of LRAs corresponds to inhibitors of glycogen synthase kinase-3. In this work, we have also studied the effects of one member of this drug class, tideglusib, in SIV-infected rhesus monkeys. When tested in vivo, however, tideglusib showed unfavorable pharmacokinetic properties, which resulted in lack of SIV latency reversal. The disconnect between our ex vivo and in vivo results highlights the importance of developing next generation LRAs with pharmacological properties that allow systemic drug delivery in relevant anatomical compartments harboring latent reservoirs.
CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection

Nature communications

2022 Jul 12

Baiyegunhi, OO;Mann, J;Khaba, T;Nkosi, T;Mbatha, A;Ogunshola, F;Chasara, C;Ismail, N;Ngubane, T;Jajbhay, I;Pansegrouw, J;Dong, KL;Walker, BD;Ndung'u, T;Ndhlovu, ZM;
PMID: 35831418 | DOI: 10.1038/s41467-022-31692-8

HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?