Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for HIV-1

ACD can configure probes for the various manual and automated assays for HIV-1 for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for HIV-1 (1152)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (62)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HIV-1 (19) Apply HIV-1 filter
  • TBD (16) Apply TBD filter
  • HIV (7) Apply HIV filter
  • HIV1 (3) Apply HIV1 filter
  • SIV (2) Apply SIV filter
  • GAPDH (1) Apply GAPDH filter
  • IL34 (1) Apply IL34 filter
  • IL-8 (1) Apply IL-8 filter
  • IFN-γ (1) Apply IFN-γ filter
  • IL-17A (1) Apply IL-17A filter
  • Il-6 (1) Apply Il-6 filter
  • SIVMM32H (1) Apply SIVMM32H filter
  • IL-1β (1) Apply IL-1β filter
  • Slc12a3 (1) Apply Slc12a3 filter
  • SIVDeltaB670 (1) Apply SIVDeltaB670 filter
  • V-HIV Clade B anti-sense (1) Apply V-HIV Clade B anti-sense filter
  • CD30 (1) Apply CD30 filter
  • vpr (1) Apply vpr filter
  • HIV-1 clade B (1) Apply HIV-1 clade B filter
  • HIV-1  (1) Apply HIV-1  filter
  • subtype C HIV-1 (1) Apply subtype C HIV-1 filter
  • influenza PB1 (1) Apply influenza PB1 filter
  • HIV-1 gag-pol (1) Apply HIV-1 gag-pol filter
  • V-HIV1-CladeB (1) Apply V-HIV1-CladeB filter
  • SHIVBG505 (gag-pol (1) Apply SHIVBG505 (gag-pol filter
  • vif-vpu-nef) (1) Apply vif-vpu-nef) filter
  • HIV-1 clade B anti-sense (1) Apply HIV-1 clade B anti-sense filter
  • HIV-1 gag/pol (1) Apply HIV-1 gag/pol filter
  • HIV-1 gag (1) Apply HIV-1 gag filter
  • HERV-Kenv-C1 (1) Apply HERV-Kenv-C1 filter
  • HIV-1 gag-pol-C2 (1) Apply HIV-1 gag-pol-C2 filter

Product

  • RNAscope (7) Apply RNAscope filter
  • RNAscope 2.0 Assay (7) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (5) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (5) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (4) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (2) Apply TBD filter
  • DNAscope HD Duplex Reagent Kit (1) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • HIV (24) Apply HIV filter
  • Infectious Disease (21) Apply Infectious Disease filter
  • Inflammation (9) Apply Inflammation filter
  • Neuroscience (6) Apply Neuroscience filter
  • Infectious (4) Apply Infectious filter
  • Stem cell (2) Apply Stem cell filter
  • Animal Models (1) Apply Animal Models filter
  • Infectious Disease: HIV (1) Apply Infectious Disease: HIV filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (62) Apply Publications filter
Intraneuronal β-Amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain

Viruses

2022 Jun 10

Li, H;McLaurin, KA;Mactutus, CF;Likins, B;Huang, W;Chang, SL;Booze, RM;
PMID: 35746739 | DOI: 10.3390/v14061268

The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., β-amyloid) were investigated in the brains of aging (>12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal β-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased β-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, β-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal β-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal β-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals.
Implications of the accumulation of CXCR5+ NK cells in lymph nodes of HIV-1 infected patients

EBioMedicine

2021 Dec 29

Guo, AL;Jiao, YM;Zhao, QW;Huang, HH;Deng, JN;Zhang, C;Fan, X;Xu, RN;Zhang, JY;Zhen, C;Xie, ZM;Qin, YM;Xu, JQ;Yang, Y;Shi, M;Huang, L;Song, JW;Wang, FS;
PMID: 34973625 | DOI: 10.1016/j.ebiom.2021.103794

B cell follicles are immune-privileged sites where intensive HIV-1 replication and latency occur, preventing a permanent cure. Recent study showed that CXCR5+ NK cells in B cell follicles can inhibit SIV replication in African green monkeys, but this has not been reported in HIV-1 infected patients.Lymphocytes and tissue sections of lymph node were collected from 11 HIV-1 positive antiretroviral therapy (ART)-naive and 19 HIV-1 negative donors. We performed immunofluorescence and RNA-scope to detect the location of CXCR5+ NK cells and its relationship with HIV-1 RNA, and performed flow cytometry and RNA-seq to analyze the frequency, phenotypic and functional characteristics of CXCR5+ NK cells. The CXCL13 expression were detected by immunohistochemistry.CXCR5+ NK cells, which accumulated in LNs from HIV-1 infected individuals, expressed high levels of activating receptors such as NKG2D and NKp44. CXCR5+ NK cells had upregulated expression of CD107a and β-chemokines, which were partially impaired in HIV-1 infection. Importantly, the frequency of CXCR5+NK cells was inversely related to the HIV-1 viral burden in LNs. In addition, CXCL13-the ligand of CXCR5-was upregulated in HIV-1 infected individuals and positively correlated with the frequency of CXCR5+ NK cells.During chronic HIV-1 infection, CXCR5+ NK cells accumulated in lymph node, exhibit altered immune characteristics and underlying anti-HIV-1 effect, which may be an effective target for a functional cure of HIV-1.
ACTIVATION OF HIV-1 PROVIRUSES INCREASES DOWNSTREAM CHROMATIN ACCESSIBILITY

iScience

2022 Nov 01

Shah, R;Gallardo, C;Jung, Y;Clock, B;Dixon, J;McFadden, W;Majumder, K;Pintel, D;Corces, V;Torbett, B;Tedbury, P;Sarafianos, S;
| DOI: 10.1016/j.isci.2022.105490

It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.
Brain is a potential sanctuary for subtype C HIV-1 irrespective of ART treatment outcome.

PLoS One.

2018 Jul 24

Tso FY, Kang G, Kwon EH, Julius P, Li Q, West JT, Wood C.
PMID: 30040863 | DOI: 10.1371/journal.pone.0201325

Subtype C HIV-1 is responsible for the largest proportion of people living with HIV-1 infection. However, there is limited information about the roles of the brain and its cell types as a potential sanctuary for this subtype and how the sanctuary may be affected by the administration of anti-retroviral therapy (ART). To address this issue, we collected postmortem brain tissues from ART treated HIV-1 infected Zambian individuals who experienced complete viral suppression and those who did not. Tissues from various brain compartments were collected from each individual as frozen and formalin-fixed paraffin embedded brain specimens, for detection and quantification of HIV-1 genomes and identification of the infected cell type. Genomic DNA and RNA were extracted from frozen brain tissues. The extracted DNA and RNA were then subjected to droplet digital PCR for HIV-1 quantification. RNA/DNAscope in situ hybridization (ISH) for HIV-1 was performed on formalin-fixed paraffin embedded brain tissues in conjugation with immunohistochemistry to identify the infected cell types. Droplet digital PCR revealed that HIV-1 gag DNA and RNA were detectable in half of the cases studied regardless of ART success or failure. The presence of HIV-1 lacked specific tissue compartmentalization since detection was random among various brain tissues. When combined with immunohistochemistry, RNA/DNAscope ISH demonstrated co-localization of HIV-1 DNA with CD68 expressing cells indicative of microglia or peripheral macrophage. Our study showed that brain is a potential sanctuary for subtype C HIV-1, as HIV-1 can be detected in the brain of infected individuals irrespective of ART treatment outcome and no compartmentalization of HIV-1 to specific brain compartments was evident.

Characterization of inducible transcription and translation-competent HIV-1 using the RNAscope ISH technology at a single-cell resolution

Front. Microbiol.

2018 Sep 14

Zhang W, Akusjärvi SS, Sönnerborg A, Neogi U.
PMID: - | DOI: 10.3389/fmicb.2018.02358

Identifying the source and dynamics of persistent HIV-1 at single-cell resolution during cART is crucial for the design of strategies to eliminate the latent HIV-1 reservoir. An assay to measure latent HIV-1 that can distinguish inducible from defective proviruses with high precision is essential to evaluate the efficacy of HIV-1 cure efforts but is presently lacking. The primary aim of this study was therefore to identify transcription and translation competent latently infected cells through detection of biomolecules that are dependent on transcriptional activation of the provirus. We investigated the applicability of two commercially available assays; PrimeFlowTM RNA Assay (RNAflow) and RNAscope™ ISH (RNAscope) for evaluation of the efficacy of latency reversal agents (LRAs) to reactivate the HIV-1 latent reservoir. The J-Lat cell model (clones 6.3, 9.3, and 10.6) and four LRAs was used to evaluate the sensitivity, specificity, and lower detection limit of the RNAflow and RNAscope assays for the detection and description of the translation-competent HIV-1 reservoir. We also checked for HIV-1 subtype specificity of the RNAscope assay using patient-derived subtype A1, B, C, and CRF01_AE recombinant plasmids following transfection in 293T cells and the applicability of the method in patient-derived peripheral blood mononuclear cells (PBMCs). The lower detection limit of RNAflow was 575 HIV-1 infected cells/million and 45 cells/million for RNAscope. The RNAscope probes, designed for HIV-1B, also detected other subtypes (A1, B, C, and CRF01_AE). RNAscope was applicable for the detection of HIV-1 in patient-derived PBMCs following LRA activation. In conclusion, our study showed that RNAscope can be used to quantify the number of directly observed individual cells expressing HIV-1 mRNA following LRA activation. Therefore, it can be a useful tool for characterization of translation-competent HIV-1 in latently infected cell at single-cell resolution in the fields of HIV-1 pathogenesis and viral persistence.

Subtype C HIV-1 reservoirs throughout the body in ART-suppressed individuals

JCI insight

2022 Oct 24

Liu, Z;Julius, P;Kang, G;West, JT;Wood, C;
PMID: 36278485 | DOI: 10.1172/jci.insight.162604

Subtype B HIV-1 reservoirs have been intensively investigated, but reservoirs in other subtypes and how they respond to antiretroviral therapy (ART) is substantially less established. To characterize subtype C HIV-1 reservoirs, we implemented postmortem frozen, as well as formalin fixed paraffin embedded (FFPE) tissue sampling of central nervous system (CNS) and peripheral tissues. HIV-1 LTR, gag, envelope (env) DNA and RNA was quantified using genomic DNA and RNA extracted from frozen tissues. RNAscope was used to localize subtype C HIV-1 DNA and RNA in FFPE tissue. Despite uniform viral load suppression in our cohort, PCR results showed that subtype C HIV-1 proviral copies vary both in magnitude and tissue distribution, with detection primarily in secondary lymphoid tissues. Interestingly, the appendix harbored proviruses in all subjects. Unlike subtype B, subtype C provirus was rarely detectable in the CNS, and there was no detectable HIV-1 RNA. HIV-1 RNA was detected in peripheral lymphoid tissues of 6 out of 8 ART-suppressed cases. In addition to active HIV-1 expression in lymphoid tissues, RNAscope revealed HIV RNA detection in CD4-expressing cells in the appendix, suggesting that this tissue was a previously unreported potential treatment-resistant reservoir for subtype C HIV-1.
CRISPR/Cas9-Induced Mutagenesis Corroborates the Role of Transportin-SR2 in HIV-1 Nuclear Import

Microbiology spectrum

2021 Oct 31

Janssens, J;Blokken, J;Lampi, Y;De Wit, F;Zurnic Bonisch, I;Nombela, I;Van de Velde, P;Van Remoortel, B;Gijsbers, R;Christ, F;Debyser, Z;
PMID: 34612665 | DOI: 10.1128/Spectrum.01336-21

To infect nondividing cells, HIV-1 needs to cross the nuclear membrane. The importin transportin-SR2 (TRN-SR2 or transportin-3) has been proposed to mediate HIV-1 nuclear import, but the detailed mechanism remains unresolved. The direct interaction of TRN-SR2 with HIV-1 integrase (IN) has been proposed to drive HIV-1 nuclear import. Alternatively, TRN-SR2 may play an indirect role by mediating nuclear import of cleavage and polyadenylation specificity factor 6 (CPSF6). To unravel the role of TRN-SR2, we designed CRISPR/Cas9 guide RNAs targeting different exons of TNPO3. Although this approach failed to generate full knockouts, monoallelic knockout clones were generated with indel mutations. HIV-1 replication was hampered in those clones at the level of HIV-1 nuclear import without an effect on the cellular distribution of the TRN-SR2 cargoes CPSF6 or alternative splicing factor1/pre-mRNA splicing factor SF2 (ASF/SF2). Recombinant ΔV105 TRN-SR2 expressed in clone 15.15 was 2-fold impaired for interaction with HIV-1 IN and classified as an interaction mutant. Our data support a model whereby TRN-SR2 acts as a cofactor of HIV-1 nuclear import without compromising the nuclear import of cellular cargoes. CRISPR/Cas9-induced mutagenesis can be used as a method to generate interface mutants to characterize host factors of human pathogens. IMPORTANCE Combination antiretroviral therapy (cART) effectively controls HIV-1 by reducing viral loads, but it does not cure the infection. Lifelong treatment with cART is a prerequisite for sustained viral suppression. The rapid emergence of drug-resistant viral strains drives the necessity to discover new therapeutic targets. The nuclear import of HIV-1 is crucial in the HIV-1 replication cycle, but the detailed mechanism remains incompletely understood. This study provides evidence that TRN-SR2 directly mediates HIV-1 nuclear import via the interaction with HIV-1 integrase. The interaction between those proteins is therefore a promising target toward a rational drug design which could lead to new therapeutic strategies due to the bottleneck nature of HIV-1 nuclear import.
Research briefing

nature.com

2023 Mar 01

Jensen, BEO;Kobbe, G;
| DOI: 10.1038/s41591-023-02215-9

We describe a 53-year-old man with HIV-1 who received allogeneic CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) in 2013 to treat acute myeloid leukemia. Four years after analytic treatment interruption (ATI), the absence of viral rebound and the lack of immunological correlates of HIV-1 antigen persistence provide convincing evidence for HIV-1 cure.
Single-Cell Imaging Shows That the Transcriptional State of the HIV-1 Provirus and Its Reactivation Potential Depend on the Integration Site

mBio

2022 Jun 16

Janssens, J;De Wit, F;Parveen, N;Debyser, Z;
PMID: 35708287 | DOI: 10.1128/mbio.00007-22

Current antiretroviral treatment fails to cure HIV-1 infection since latent provirus resides in long-lived cellular reservoirs, rebounding whenever therapy is discontinued. The molecular mechanisms underlying HIV-1 latency are complex where the possible link between integration and transcription is poorly understood. HIV-1 integration is targeted toward active chromatin by the direct interaction with a host protein, lens epithelium-derived growth factor (LEDGF/p75). LEDGINs are small-molecule inhibitors of the LEDGF/p75-integrase (IN) interaction that effectively inhibit and retarget HIV-1 integration out of preferred integration sites, resulting in residual provirus that is more latent. Here, we describe a single-cell branched DNA imaging method for simultaneous detection of viral DNA and RNA. We investigated how treatment with LEDGINs affects the location, transcription, and reactivation of HIV-1 in both cell lines and primary cells. This approach demonstrated that LEDGIN-mediated retargeting hampered the baseline transcriptional state and the transcriptional reactivation of the provirus, evidenced by the reduction in viral RNA expression per residual copy. Moreover, treatment of primary cells with LEDGINs induced an enrichment of provirus in deep latency. These results corroborate the impact of integration site selection for the HIV-1 transcriptional state and support block-and-lock functional cure strategies in which the latent reservoir is permanently silenced after retargeting. IMPORTANCE A longstanding question exists on the impact of the HIV-1 integration site on viral gene expression. This unsolved question has significant implications for the search toward an HIV-1 cure, as eradication strategies set up to reactivate and eliminate HIV-1 depend on the site where the provirus is integrated. The main determinant for integration site selection is the interaction of the HIV-1 integrase (IN) and the host chromatin targeting factor, LEDGF/p75. LEDGINs are small-molecule inhibitors of the LEDGF/p75-IN interaction that inhibit and retarget HIV-1 integration out of preferred integration sites. Using both LEDGINs and branched DNA (bDNA) imaging, we now investigated, in much detail, the impact of integration site selection on the three-dimensional location of the provirus, HIV-1 transcription, and reactivation. Our results provide evidence for a "block-and-lock" functional cure strategy that aims to permanently silence HIV-1 by LEDGIN-mediated retargeting to sites that are less susceptible to reactivation after treatment interruption.
Imaging lymphoid tissues in nonhuman primates to understand SIV pathogenesis and persistence.

Curr Opin Virol.

2016 Aug 01

Deleage C, Turkbey B, Estes JD.
PMID: 27490446 | DOI: 10.1016/j.coviro.2016.07.002

CD4+ T cells are the primary HIV-1 target cell, with the vast majority of these cells residing within lymphoid tissue compartments throughout the body. Predictably, HIV-1 infection, replication, localization, reservoir establishment and persistence, as well as associated host immune and inflammatory responses and disease pathology principally take place within the tissues of the immune system. By virture of the fact that the virus-host struggle is played out within lymphoid and additional tissues compartments in HIV-1 infected individuals it is critical to understand HIV-1 infection and disease within these relevant tissue sites; however, there are obvious limitations to studying these dynamic processes in humans. Nonhuman primate (NHP) research has provided a vital bridge between basic and preclinical research and clinical studies, with experimental SIV infection of NHP models offering unique opportunities to understand key processes of HIV-1 infection and disease that are either not practically feasible or ethical in HIV-1 infected humans. In this review we will discuss current approaches to studying the tissue based immunopathogenesis of AIDS virus infection in NHPs, including both analyses of tissues obtained at biopsy or necropsy and complementary non-invasive imaging approaches that may have practical utility in monitoring HIV-1 disease in the clinical setting.

Assessing proviral competence: current approaches to evaluate HIV-1 persistence

Current opinion in HIV and AIDS

2021 Jul 01

Cicilionytė, A;Berkhout, B;Pasternak, AO;
PMID: 33993171 | DOI: 10.1097/COH.0000000000000687

Despite decades of suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and fuel viral rebound if therapy is interrupted. The persistence of viral reservoirs in infected individuals is the main obstacle to achieving HIV-1 eradication or a long-term remission. Accurate assessment of the viral reservoir size is necessary for monitoring the effectiveness of the curative interventions. Here, we review the recent progress in the development of assays to measure HIV-1 persistence, highlighting their key advantages and limitations.To estimate the viral reservoir size, a number of assays have been developed that assess different aspects of HIV-1 persistence in ART-treated individuals. These include viral outgrowth assays to measure proviral replication competence, sequencing-based assays to measure genetic intactness of HIV-1 proviruses, and diverse techniques that measure the ability of proviruses to produce viral RNA and/or proteins (transcription and translation competence), with or without ex vivo stimulation. Recent years have seen the development of next-generation reservoir assays that, in addition to measuring viral persistence markers, assess the proviral integration sites and characterize the HIV-1 reservoir cells on the single-cell level.Although no assay yet can measure the HIV-1 reservoir with 100% accuracy, recent technical advances allow reliable estimation of its size and composition.
Immune Activations and Viral Tissue Compartmentalization During Progressive HIV-1 Infection of Humanized Mice.

Front Immunol.

2019 Feb 28

Su H, Cheng Y, Sravanam S, Mathews S, Gorantla S, Poluektova LY, Dash PK, Gendelman HE.
PMID: 30873181 | DOI: 10.3389/fimmu.2019.00340

Human immunodeficiency virus type one (HIV-1) tissue compartments are established soon after viral infection. However, the timing in which virus gains a permanent foothold in tissue and the cellular factors that control early viral-immune events are incompletely understood. These are critical events in studies of HIV-1 pathogenesis and in the development of viral reservoirs after antiretroviral therapy. Moreover, factors affecting the permanence of viral-tissue interactions underlie barriers designed to eliminate HIV-1 infection. To this end we investigated the temporal and spatial viral and host factors during HIV-1 seeding of tissue compartments. Two humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mouse models were employed. In the first, immune deficient mice were reconstituted with human CD34+ cord blood hematopoietic stem cells (HSC) (hu-HSC) and in the second mice were transplanted with adult mature human peripheral lymphocytes (hu-PBL). Both, in measure, reflect relationships between immune activation and viral infection as seen in an infected human host. Following humanization both mice models were infected with HIV-1ADA at 104 50% tissue culture infective doses. Viral nucleic acids and protein and immune cell profiles were assayed in brain, lung, spleen, liver, kidney, lymph nodes, bone marrow, and gut from 3 to 42 days. Peripheral CD4+ T cell loss began at 3 days together with detection of HIV-1 RNA in both mouse models after initiation of HIV-1 infection. HIV-1 was observed in all tested tissues at days 3 and 14 in hu- PBL and HSC mice, respectively. Immune impairment was most prominent in hu-PBL mice. T cell maturation and inflammation factors were linked directly to viral tissue seeding in both mouse models. We conclude that early viral tissue compartmentalization provides a roadmap for investigations into HIV-1 elimination.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?