Am J Respir Crit Care Med. 2018 Dec 15.
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.
PMID: 30554520 | DOI: 10.1164/rccm.201712-2410OC
Abstract RATIONALE: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. OBJECTIVES: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells or other cell types in lung tissue from subjects with pulmonary fibrosis compared with controls. METHODS: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data in using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. MEASUREMENTS AND MAIN RESULTS: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to non-overlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. CONCLUSIONS: We generated a single cell atlas of pulmonary fibrosis. Using this atlas we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
Journal for immunotherapy of cancer
Michels, KR;Sheih, A;Hernandez, SA;Brandes, AH;Parrilla, D;Irwin, B;Perez, AM;Ting, HA;Nicolai, CJ;Gervascio, T;Shin, S;Pankau, MD;Muhonen, M;Freeman, J;Gould, S;Getto, R;Larson, RP;Ryu, BY;Scharenberg, AM;Sullivan, AM;Green, S;
PMID: 36918221 | DOI: 10.1136/jitc-2022-006292
Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation.UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice.In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy.These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.
Journal for ImmunoTherapy of Cancer
Basak, S;Dikshit, A;Yu, M;Ji, H;Chang, C;Zhang, B;
| DOI: 10.1136/jitc-2021-sitc2021.092
BackgroundThe tumor microenvironment (TME) is highly complex, comprised of tumor cells, immune cells, stromal cells, and extracellular matrix. Understanding spatial interactions between various cell types and their activation states in the TME is crucial for implementing successful immunotherapy strategies against various types of cancer. This study demonstrates a highly sensitive and specific multiplexed technique, the RNAscope HiPlex v2 in situ hybridization (ISH) assay for spatial and transcriptomic profiling of target genes to assess immune regulation in human lung, breast, cervical and ovarian FFPE tumor tissues.MethodsWe have expanded our current RNAscope HiPlex assay capability of iteratively multiplexing up to 12 targets in fixed and fresh frozen samples to include formalin fixed paraffin embedded (FFPE) tissues. The novel FFPE reagent effectively reduces background autofluorescence, improving the signal to noise ratio. We have leveraged this technology to investigate spatial expression of 12 oncology and immuno-oncology target genes, including tumor markers, immune checkpoint markers, immunosuppression markers, immune cell markers and secreted chemokine RNA expression profile within the TME. The targets were simultaneously registered using HiPlex image registration software v2 that enables background subtraction.ResultsWe visualized T cell infiltration and identified T cell subsets within tumors using CD3and CD8 expression and activated T cells by IFNG expression. We further identified subsets of pro- and anti-inflammatory macrophages by CD68 and CD163 expression as well effector cells which secrete chemokines and cytokine. We also detected the hypoxia markers HIF1A and VEGF to elucidate the immunosuppressive state of tumor cells. Preliminary analysis and quantification of the HIF1A expression using HALO image analysis software showed higher copy numbers in the lung tumor as compared to the other tumors, demonstrating the sensitivity of the assay through differential expression. We additionally showed the differential expression of immune checkpoint markers PDCD1, and CD274 within the TME.ConclusionsUsing a highly sensitive multiplexed RNAscope HiPlex v2 ISH assay, we have demonstrated the capability of this technique to spatially resolve 12 targets in four different tumor types. The FFPE reagent efficiently quenched background autofluorescence in the tissues and identified immune cell signatures within the TME. Quantification of immunosuppressive markers further depicted a differential expression among various tumors. This technology is highly beneficial for investigating complex and spatial tumor-stroma interactions in basic science and translational research. The assay can also provide valuable understanding of the biological crosstalk among various cell types in complex and heterogeneous tissues.
Abstract LB235: Characterizing tumor-infiltrated immune cells with spatial context using an integrated RNAscope-immunohistochemistry co-detection workflow in FFPE tissues
Dikshit, A;Phatak, J;Hernandez, L;Doolittle, E;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb235
Complex tissues such as tumors are comprised of multiple cells types and extracellular matrix. These cells include heterogenous populations of immune cells that infiltrate the tumors. Understanding the composition of these immune infiltrates in the tumor microenvironment (TME) can provide key insights to guide therapeutic intervention and predict treatment response. Thorough understanding of complex tissue dynamics and immune cell characterization requires a multi-omics approach. Simultaneous detection of RNA and protein using in situ hybridization (ISH) and immunohistochemistry/immunofluorescence (IHC/IF) can reveal cellular sources of secreted proteins, identify specific cell types, and visualize the spatial organization of cells within the tissue. However, a sequential workflow of ISH followed by IHC/IF frequently yields suboptimal protein detection because the protease digestion step in the ISH protocol resulting in poor antibody signal. Here we demonstrate a newly developed integrated ISH/IHC workflow that can substantially improve RNA-protein co-detection, enabling the visualization and characterization of tumor immune infiltrates at single-cell resolution with spatial and morphological context. To characterize tumor-infiltrating immune cells in a tumor TMA (tumor microarray), we utilized the RNAscope Multiplex Fluorescence assay in combination with the RNA-Protein Co-detection Kit to detect multiple immune cell populations. Immune cells such as macrophages, T cells and NK cells were detected using specific antibodies against CD68, CD8, CD4 and CD56, respectively. Precise characterization of these immune cells was achieved by using probes against targets such as CCL5, IFNG, GNZB, IL-12, NCR1 etc. that not only help in identifying specific immune cells but also assist in determining their activation states. We identified subsets of T cells such as CD4+ regulatory T cells and CD8+ cytotoxic T lymphocytes. Additionally, we were able to determine the activation states of CD8+ T cells by visualizing the expression of IFNG and GZMB. Furthermore, infiltrating macrophages were identified by detecting the CD68 protein expression while the M1 and M2 subsets were differentiated by detecting the M2-specific target RNA for CD163. Similarly, NK cells were identified by detecting CD56 protein in combination with CCL5 and NCR1 RNA expression. Interestingly, the degree of infiltration of the different immune cell populations varied based on the tumor type. In conclusion, the new RNAscope-ISH-IHC co-detection workflow and reagents enable optimized simultaneous visualization of RNA and protein targets by enhancing the compatibility of antibodies - including many previously incompatible antibodies - with RNAscope. This new workflow provides a powerful new approach to identifying and characterizing tumor infiltrating populations of immune cells.
Journal for ImmunoTherapy of Cancer
Jabado, O;Fan, L;Souza, P;Harris, A;Chaparro, A;Qutaish, M;Si, H;Dannenberg, J;Sasser, K;Couto, S;Fereshteh, M;
| DOI: 10.1136/jitc-2021-sitc2021.928
BackgroundPancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with short overall survival; the standard of care (SoC) is chemotherapy. Immunotherapies in development aim to remodel the stroma by depleting immunosuppressive cell types or using T-cell redirection to kill tumor cells. To date, none of these methods have improved overall survival beyond SoC. Next generation immunotherapies that employ histopathology and molecular subtyping1 for target and patient selection may succeed. Here we leverage a spatial transcriptomics platform (Nanostring Digital Spatial Profiling, DSP) to reveal molecular signaling in tumoral and stromal cells in 57 PDAC patients using tumor microarrays (TMAs). This approach is rapid and clinically relevant as molecular and histology data can be easily bridged.MethodsTMAs generated from surgical resection tissue were commercially sourced. DSP was performed using the CTA RNA panel (1,800 target genes) using PanCK fluorescence for tumor/stroma segmentation. In parallel, slides were chromogenically stained for T-cells (CD3) and macrophages (CD68/CD163). Differential gene expression, gene signature and gene co-expression network analysis was performed using linear models in R.2 3ResultsDifferential gene expression analysis and correlation to IHC confirmed the DSP platform successfully profiled tumor and stromal compartments (figure 1). Immune cell signatures4 and pathway analysis revealed a heterogenous stromal environment. Using a fibroblast gene signature derived from single-cell RNAseq5 we found fibroblast density was positively correlated to PDGFR signaling and MHC-II expression but negatively correlated to B, CD4+ T and neutrophil cell levels (figure 2a). This finding supports the idea that atypical antigen presentation in cancer associated fibroblasts (CAFs) may be exploitable for immunotherapies.6 We constructed a co-expression network from in-situ stromal gene expression and used it to identify receptors coordinately expressed with the immunosuppressive macrophage marker CSF1R as a bispecific antibody partner (figure 2b).7 Classical macrophage markers were identified but also receptors with lesser-known functions in macrophages (TIM3/HAVCR2, FPR3, MS4A6A, LILRB4). Surveying target pairs in this method allows rapid, patient-specific confirmation in serial TMA sections with singleplex IHC or RNAscope.Abstact 928 Figure 1Segmentation strategy and validation of DSP (A) PanCK, CD68 and CD3 staining from two representative tumor cores; (B, C) correlation of gene transcripts in stroma to cell counts from chromogenic staining; (D) heatmap of selected genes differentially expressed in tumor and stroma (n=57 patients).Abstract 928 Figure 2Exploration of the stromal compartment in PDAC TMAs. (A) Heatmap of selected cell type and gene signatures from gene expression in the stroma, color represents single sample enrichment score using GSVA method; (B) a gene co-expression subnetwork in the stroma centered on CSF1R, edge thickness represents strength of correlation, green nodes have evidence for cell surface expression based on proteomic profiling.7ConclusionsIn this study we were able to recapitulate known PDAC biology using very small samples of primary tumors. The combination of TMAs and DSP enables a rapid validation of targets and hypothesis generation for bispecific parings. Further analysis of untreated (n=14) and post-adjuvant chemotherapy (n=26) patients using RNA DSP, IHC and bulk RNAseq is under way. Results from this cohort will enable an integrated histopathology and molecular approach to developing next-generation immunotherapies.ReferencesCollisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2019 April;16(4):207-220.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research 43(7):e47.Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics 14,7.Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017 January 3;18(1):248-262.Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jané-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016 April 8;352(6282):189-96.Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 2019 August;9(8):1102-1123. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Härtlová A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B. A mass spectrometric-derived cell surface protein atlas. PLoS One 2015 April 20;10(3):e0121314.Ethics ApprovalSpecimens were harvested from unused tissue after a surgical tumor resection procedure. A discrete legal consent form from both hospital and individuals was obtained by the commercial tissue vendor BioMax US for all samples analyzed in this abstract. All human tissues are collected under HIPPA approved protocols.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.