Massive Perivillous Fibrin Deposition and Chronic Histiocytic Intervillositis a Complication of SARS-CoV-2 Infection
Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society
Marton, T;Hargitai, B;Hunter, K;Pugh, M;Murray, P;
PMID: 34082613 | DOI: 10.1177/10935266211020723
An emerging complication of COVID-19 (SARS-CoV-2) infection is reported. A 23-year-old patient presented with high temperature and reduced fetal movements at 25 + 5/40 weeks of gestation. RT-PCR proved maternal COVID-19 infection. Ultrasound examination confirmed intrauterine death. Placenta histology showed necrosis of the villous trophoblast, associated with Chronic Histiocytic Intervillositis (CHI) and Massive Perivillous Fibrin Deposition (MPFD) with up to 90% - of the intervillous spaces being involved. Immunohistochemistry showed CD68 positive histiocytes in the intervillous spaces and the villous trophoblast was positive for the COVID-19 spike protein. RNA scope signal was indicative of the presence of the viral genome and active viral replication in the villous trophoblastic cells, respectively. MPFD is a gradually developing end-stage disease with various etiology, including autoimmune and alloimmune maternal response to antigens expressed at the feto-maternal interface and frequently accompanies chronic alloimmune villitis or histiocytic intervillositis. Covid-19 infection is associated with similar pattern of histological changes of the placenta leading to placental insufficiency and fetal death. This case report supports maternal- fetal vertical transmission of SARS-CoV-2 virus leading to placental insufficiency and fetal demise. MPFD and CHI appear to be the typical placental histology for SARS-CoV-2 virus infection associated fetal demise.
Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence
Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
Vierhout, M;Ayoub, A;Naiel, S;Yazdanshenas, P;Revill, SD;Reihani, A;Dvorkin-Gheva, A;Shi, W;Ask, K;
PMID: 34107123 | DOI: 10.1111/wrr.12946
Since the discovery of the myofibroblast over 50 years ago, much has been learned about its role in wound healing and fibrosis. Its origin, however, remains controversial, with a number of progenitor cells being proposed. Macrophage-myofibroblast transition (MMT) is a recent term coined in 2014 that describes the mechanism through which macrophages, derived from circulating monocytes originating in the bone marrow, transformed into myofibroblasts and contributed to kidney fibrosis. Over the past years, several studies have confirmed the existence of MMT in various systems, suggesting that MMT could potentially occur in all fibrotic conditions and constitute a reasonable therapeutic target to prevent progressive fibrotic disease. In this perspective, we examined recent evidence supporting the notion of MMT in both human disease and experimental models across organ systems. Mechanistic insight from these studies and information from in vitro studies is provided. The findings substantiating plausible MMT showcased the co-expression of macrophage and myofibroblast markers, including CD68 or F4/80 (macrophage) and α-SMA (myofibroblast), in fibroblast-like cells. Furthermore, fate-mapping experiments in murine models exhibiting myeloid-derived myofibroblasts in the tissue further provide direct evidence for MMT. Additionally, we provide some evidence from single cell RNA sequencing experiments confirmed by fluorescent in situ hybridisation studies, showing monocyte/macrophage and myofibroblast markers co-expressed in lung tissue from patients with fibrotic lung disease. In conclusion, MMT is likely a significant contributor to myofibroblast formation in wound healing and fibrotic disease across organ systems. Circulating precursors including monocytes and the molecular mechanisms governing MMT could constitute valid targets and provide insight for the development of novel antifibrotic therapies; however, further understanding of these processes is warranted.
Association of vaping with decreased vascular endothelial growth factor expression and decreased microvessel density in cutaneous wound healing tissue in rats
Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
Jaleel, Z;Blasberg, E;Troiano, C;Montanaro, P;Mazzilli, S;Gertje, HP;Crossland, NA;Platt, M;Spiegel, J;
PMID: 34129265 | DOI: 10.1111/wrr.12945
Vaping is suggested to be a risk factor for poor wound healing akin to smoking. However, the molecular and histologic mechanisms underlying this postulation remain unknown. Our study sought to compare molecular and histologic changes in cutaneous flap and non-flap tissue between vaping, smoking and control cohorts. Animal study of 15 male Sprague-Dawley rats was randomized to three cohorts: negative control (n = 5), e-cigarette (n = 5) and cigarette (n = 5) and exposed to their respective treatments with serum cotinine monitoring. After 30 days, random pattern flaps were raised and healed for 2 weeks after which skin punch biopsies of flap and non-flap tissues were collected for quantitative-reverse transcription-polymerase chain reaction of three selected wound healing genes (transforming growth factor β [TGF-β], vascular endothelial growth factor [VEGF], matrix metalloproteinase-1 [MMP-1]); then, immunohistochemistry for CD68 expression, α-smooth muscle actin looking at microvessel density (MVD) and in situ hybridization to localize VEGF production were undertaken. In flap tissue, vaping (mean[SEM]) (0.61[0.07]) and smoking (0.70[0.04]) were associated with decreased fold change of VEGF expression compared with controls (0.91[0.03]) (p < 0.05, p < 0.05, respectively). In non-flap tissue, only vaping was associated with decreased VEGF expression (mean[SEM]) (0.81[0.07]), compared with controls (1.17[0.10]) (p < 0.05) with expression primarily localized to basal keratinocytes and dermal capillaries. Immunohistochemistry showed decreased MVD in smoking (0.27[0.06]) and vaping (0.26[0.04]) flap tissue compared to matched controls (0.65[0.14]) (p < 0.05, p < 0.05, respectively) and decreased areas of fibrosis compared with controls on gross histology. Vaping and smoking were similarly associated with decreased VEGF expression, MVD and fibrotic changes in flap tissue. The results suggest attenuated angiogenesis via decreased VEGF expression as a mechanism for poor wound healing in vaping-exposed rats.
SARS-CoV-2 leads to a small vessel endotheliitis in the heart
Maccio, U;Zinkernagel, AS;Shambat, SM;Zeng, X;Cathomas, G;Ruschitzka, F;Schuepbach, RA;Moch, H;Varga, Z;
PMID: 33422990 | DOI: 10.1016/j.ebiom.2020.103182
SARS-CoV-2 infection (COVID-19 disease) can induce systemic vascular involvement contributing to morbidity and mortality. SARS-CoV-2 targets epithelial and endothelial cells through the ACE2 receptor. The anatomical involvement of the coronary tree is not explored yet. Cardiac autopsy tissue of the entire coronary tree (main coronary arteries, epicardial arterioles/venules, epicardial capillaries) and epicardial nerves were analyzed in COVID-19 patients (n = 6). All anatomical regions were immunohistochemically tested for ACE2, TMPRSS2, CD147, CD45, CD3, CD4, CD8, CD68 and IL-6. COVID-19 negative patients with cardiovascular disease (n = 3) and influenza A (n = 6) served as controls. COVID-19 positive patients showed strong ACE2 / TMPRSS2 expression in capillaries and less in arterioles/venules. The main coronary arteries were virtually devoid of ACE2 receptor and had only mild intimal inflammation. Epicardial capillaries had a prominent lympho-monocytic endotheliitis, which was less pronounced in arterioles/venules. The lymphocytic-monocytic infiltrate strongly expressed CD4, CD45, CD68. Peri/epicardial nerves had strong ACE2 expression and lympho-monocytic inflammation. COVID-19 negative patients showed minimal vascular ACE2 expression and lacked endotheliitis or inflammatory reaction. ACE2 / TMPRSS2 expression and lymphomonocytic inflammation in COVID-19 disease increases crescentically towards the small vessels suggesting that COVID-19-induced endotheliitis is a small vessel vasculitis not involving the main coronaries. The inflammatory neuropathy of epicardial nerves in COVID-19 disease provides further evidence of an angio- and neurotrophic affinity of SARS-COV2 and might potentially contribute to the understanding of the high prevalence of cardiac complications such as myocardial injury and arrhythmias in COVID-19. No external funding was necessary for this study.
Journal for ImmunoTherapy of Cancer
Basak, S;Dikshit, A;Yu, M;Ji, H;Chang, C;Zhang, B;
| DOI: 10.1136/jitc-2021-sitc2021.092
BackgroundThe tumor microenvironment (TME) is highly complex, comprised of tumor cells, immune cells, stromal cells, and extracellular matrix. Understanding spatial interactions between various cell types and their activation states in the TME is crucial for implementing successful immunotherapy strategies against various types of cancer. This study demonstrates a highly sensitive and specific multiplexed technique, the RNAscope HiPlex v2 in situ hybridization (ISH) assay for spatial and transcriptomic profiling of target genes to assess immune regulation in human lung, breast, cervical and ovarian FFPE tumor tissues.MethodsWe have expanded our current RNAscope HiPlex assay capability of iteratively multiplexing up to 12 targets in fixed and fresh frozen samples to include formalin fixed paraffin embedded (FFPE) tissues. The novel FFPE reagent effectively reduces background autofluorescence, improving the signal to noise ratio. We have leveraged this technology to investigate spatial expression of 12 oncology and immuno-oncology target genes, including tumor markers, immune checkpoint markers, immunosuppression markers, immune cell markers and secreted chemokine RNA expression profile within the TME. The targets were simultaneously registered using HiPlex image registration software v2 that enables background subtraction.ResultsWe visualized T cell infiltration and identified T cell subsets within tumors using CD3and CD8 expression and activated T cells by IFNG expression. We further identified subsets of pro- and anti-inflammatory macrophages by CD68 and CD163 expression as well effector cells which secrete chemokines and cytokine. We also detected the hypoxia markers HIF1A and VEGF to elucidate the immunosuppressive state of tumor cells. Preliminary analysis and quantification of the HIF1A expression using HALO image analysis software showed higher copy numbers in the lung tumor as compared to the other tumors, demonstrating the sensitivity of the assay through differential expression. We additionally showed the differential expression of immune checkpoint markers PDCD1, and CD274 within the TME.ConclusionsUsing a highly sensitive multiplexed RNAscope HiPlex v2 ISH assay, we have demonstrated the capability of this technique to spatially resolve 12 targets in four different tumor types. The FFPE reagent efficiently quenched background autofluorescence in the tissues and identified immune cell signatures within the TME. Quantification of immunosuppressive markers further depicted a differential expression among various tumors. This technology is highly beneficial for investigating complex and spatial tumor-stroma interactions in basic science and translational research. The assay can also provide valuable understanding of the biological crosstalk among various cell types in complex and heterogeneous tissues.