Lee, EJ;Saraiva, LR;Hanchate, NK;Ye, X;Asher, G;Ho, J;Buck, LB;
PMID: 35610316 | DOI: 10.1038/s41598-022-12663-x
Scents have been employed for millennia to allay stress, but whether or how they might do so is largely unknown. Fear and stress induce increases in blood stress hormones controlled by hypothalamic corticotropin releasing hormone neurons (CRHNs). Here, we report that two common odorants block mouse stress hormone responses to three potent stressors: physical restraint, predator odor, and male-male social confrontation. One odorant inhibits restraint and predator odor activation of excitatory neurons upstream of CRHNs in the bed nucleus of the stria terminalis (BNSTa). In addition, both activate inhibitory neurons upstream of CRHNs in the hypothalamic ventromedial nucleus (VMH) and silencing of VMH inhibitory neurons hinders odor blocking of stress. Together, these findings indicate that odor blocking can occur via two mechanisms: (1) Inhibition of excitatory neurons that transmit stress signals to CRHNs and (2) activation of inhibitory neurons that act directly or indirectly to inhibit stressor activation of CRHNs.
A neural circuit for excessive feeding driven by environmental context in mice
Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9
Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Fujii Y, Suzuki K, Hasegawa Y, Nanba F, Toda T, Adachi T, Taira S, Osakabe N.
PMID: 29902479 | DOI: 10.1016/j.neulet.2018.06.015
We previously confirmed that postprandial alterations in the circulation and metabolism after a single oral dose of flavan 3-ols (mixture of catechin and catechin oligomers) were involved in an increase in sympathetic nervous activity. However, it is well known that, in response to various stresses, activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs together with sympathetic nerve activity, which is associated with activation of the sympathetic-adrenal-medullary (SAM) axis. In this study, we examined whether the HPA axis was activated after a single dose of flavan 3-ols. We administered an oral dose of 10 or 50 mg/kg flavan 3-ols to male ICR mice, removed the brains, and fixed them in paraformaldehyde-phosphate buffer. Other animals that were treated similarly were decapitated, and blood was collected. In the paraventricular nucleus (PVN), c-fos mRNA expression increased significantly at 15 min after administration of either 10 or 50 mg/kg flavan 3-ols. Corticotropin-releasing hormone (CRH) mRNA expression levels significantly increased at 240 min after administration of 10 mg/kg flavan 3-ols, and at 60 min after administration of 50 mg/kg flavan 3-ols. Plasma corticosterone levels were also significantly increased at 240 min after ingestion of 50 mg/kg flavan 3-ols. In this experiment, we confirmed that the ingestion of flavan 3-ols acted as a stressor in mammals with activation both the SAM and HPA axes.
Buhidma, Y;Hobbs, C;Malcangio, M;Duty, S;
PMID: 37100804 | DOI: 10.1038/s41531-023-00510-3
Pain is a key non-motor feature of Parkinson's disease (PD) that significantly impacts on life quality. The mechanisms underlying chronic pain in PD are poorly understood, hence the lack of effective treatments. Using the 6-hydroxydopamine (6-OHDA) lesioned rat model of PD, we identified reductions in dopaminergic neurons in the periaqueductal grey (PAG) and Met-enkephalin in the dorsal horn of the spinal cord that were validated in human PD tissue samples. Pharmacological activation of D1-like receptors in the PAG, identified as the DRD5+ phenotype located on glutamatergic neurons, alleviated the mechanical hypersensitivity seen in the Parkinsonian model. Downstream activity in serotonergic neurons in the Raphé magnus (RMg) was also reduced in 6-OHDA lesioned rats, as detected by diminished c-FOS positivity. Furthermore, we identified increased pre-aggregate α-synuclein, coupled with elevated activated microglia in the dorsal horn of the spinal cord in those people that experienced PD-related pain in life. Our findings have outlined pathological pathways involved in the manifestation of pain in PD that may present targets for improved analgesia in people with PD.
He, Y;Madeo, G;Liang, Y;Zhang, C;Hempel, B;Liu, X;Mu, L;Liu, S;Bi, GH;Galaj, E;Zhang, HY;Shen, H;McDevitt, RA;Gardner, EL;Liu, QS;Xi, ZX;
PMID: 36054363 | DOI: 10.1126/sciadv.abo1440
Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.
Yang, Y;Mou, B;Zhao, H;Yun, X;Xiong, M;Liu, Y;Pan, H;Ma, C;Li, B;Peng, J;
| DOI: 10.2139/ssrn.4164239
Although itch and pain have many similarities, they are completely different in perceptual experience and behavioral response. In recent years, we have a deep understanding of the neural pathways of itch sensation transmission. However, there are few reports on the role of non-neuronal cells in itch. Microglia are known to play a key role in chronic neuropathic pain and acute inflammatory pain. It is still unknown whether microglia are also involved in regulating the transmission of itch sensation. In the present study, we used several kinds of transgenic mice to specifically deplete CX3CR1+ central microglia and peripheral macrophages together (whole depletion), or selectively deplete central microglia alone (central depletion). We observed that the acute itch responses to histamine, compound 48/80 and chloroquine were all significantly reduced in mice with either whole or central depletion. Spinal c-fos mRNA assay and further studies revealed that histamine and compound 48/80, but not chloroquine elicited primary itch signal transmission from DRG to spinal npr1- and somatostatin-positive neurons relied on microglial CX3CL1-CX3CR1 pathway. Our results indicated that central microglia were involved in multiple types of acute chemical itch transmission, while the underlying mechanisms for histamine dependent and non-dependent itch transmission were different that the former required the CX3CL1-CX3CR1 signal pathway.
Chronic High Fat Diet Disrupts Angiotensin‐(1‐7) Mas Receptor Localization in the Arcuate Nucleus of the Hypothalamus
Mehay, D;Bingaman, S;Silberman, Y;Arnold, A;
| DOI: 10.1096/fasebj.2021.35.S1.02093
Introduction The control of energy balance involves communication of peripheral hormones with brain regions controlling food intake and energy expenditure such as the arcuate nucleus of the hypothalamus (ARC). Within the ARC, two primary neuronal subpopulations control energy balance: proopiomelanocortin (POMC) neurons, which reduce food intake and increase energy expenditure; and agouti-related protein (AgRP) neurons, which inhibit POMC neurons and conversely increase food intake and suppress energy expenditure. These circuits are typically disrupted by high fat diet (HFD) leading to a chronic state of energy imbalance and obesity. Accumulating evidence suggests that HFD-induced obesity is associated with deficiency of angiotensin (Ang)-(1-7), a protective renin-angiotensin system hormone. Our recent data show that systemically administered Ang-(1-7) induces adipose thermogenesis to enhance energy expenditure and promote weight loss. We propose that effects of Ang-(1-7) on energy balance involve activation of ARC neurocircuits, but this has not been tested. Additionally, the localization and neuronal subpopulations expressing Ang-(1-7) mas receptors (MasR) in the ARC is unknown. In this study, we hypothesized that: Ang-(1-7) activates ARC neurons; MasR are expressed in the ARC and are primarily colocalized with POMC neurons; and the ability of Ang-(1-7) to activate ARC neurons as well as co-localization of MasR with POMC neurons is disrupted following chronic HFD. Methods Male C57Bl/6J mice were fed a 60% HFD or matched control diet ad libitum for 12 weeks. Mice then received subcutaneous injection of Ang-(1-7) [2 mg/kg] to induce neuronal activation in the ARC, as measured by c-fos gene expression (n=4-6/group). In a second cohort of mice, RNAscope in situ hybridization was performed on coronal ARC sections to determine co-localization of MasR mRNA within POMC versus AgRP neurons (n=5/group). Results We found that Ang-(1-7) increases the number of c-fos positive cells in the ARC (39±6 vs. 19±3 saline; p=0.022) in control diet mice. Ang-(1-7)-mediated activation of ARC neurons was attenuated in HFD mice (34±3 vs. 23±4 saline; p=0.185). The rostral-medial-caudal distribution of ARC MasR was similar between control diet and HFD mice, with no difference in percentage of MasR positive neurons between groups (18±1 and 15±5%, respectively; p=0.733). MasR were more highly co-localized to POMC versus AgRP neurons, with HFD tending to reduce these co-localizations (MasR/POMC: 49±10 control vs. 33±5% HFD, p=0.199; MasR/AgRP: 36±11 control vs.16±7% HFD, p=0.209). Conclusions These findings suggest that chronic HFD reduces the ability of Ang-(1-7) to acutely activate neurons in the ARC. Further, HFD disrupts co-localization of MasR with POMC and AgRP neurons in the ARC indicating disconnect in the endogenous neurocircuitry controlling energy balance. Further studies are needed to explore the importance of MasR in these neuronal subpopulations for energy balance, to determine the potential for targeting of Ang-(1-7) as an innovative pharmacological strategy for obesity treatment.
Fluri F, Mützel T, Schuhmanna MK, Krstić M, Endres H, Volkmann J.
PMID: 28842194 | DOI: 10.1016/j.jneumeth.2017.08.024
Abstract
BACKGROUND:
Commercial neurostimulators for clinical use are effective in patients; however they are too large and prohibitively expensive for preclinical studies. Thus, there is an urgent need of a small inexpensive and wireless microstimulator which is fully programmable in frequency, pulse width and amplitude for rodent experiments.
NEW METHODS:
Rats were subjected to a photothrombotic stroke of the right sensorimotor cortex and a microelectrode was implanted in the right mesencephalic locomotor region. The microstimulator was connected with the head plug of the rat. Three different stimulation frequencies were applied and different stimulating amplitudes were chosen. Under these conditions, gait velocity and locomotor behavior of six rats were examined on a beam.
RESULTS:
The head-mounted microstimulator allowed freedom in all motor activities performed spontaneously by the tested rats. Increasing either the frequency or the stimulating amplitude increased gait velocity and ameliorated locomotor behavior after stroke.
COMPARISON WITH EXISTING METHODS:
Other devices for DBS in rodents must be implanted under the skin or worn in an animal jacket on the back by the tested rat. Some available systems require even a tethering of the tested animal via a cable to an external stimulation system, which limits the freedom of movement.
CONCLUSION:
Here, we present a freely programmable microstimulator including DBS-typical stimulating parameters. The lightweight device is connected by a simple plug to the head allowing full freedom of movement and exchange of batteries for long-term experiments. The design of this stimulator is suitable for sophisticated behavior tests requiring balance and skilled walking.
Fluri F, Malzahn U, Homola GA, Schuhmann MK, Kleinschnitz C, Volkmann J.
PMID: 29059697 | DOI: 10.1002/ana.25086
Abstract
OBJECTIVE:
One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Since electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model.
METHODS:
Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam walking test and videokinematic analysis (CatWalk™) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS.
RESULTS:
Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the Catwalk™-system. Rats regained the ability to cross the beam unassisted showing a reduced number of paw slips and misses.
INTERPRETATION:
MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits.
The Orexigenic Force of Olfactory Palatable Food Cues in Rats
Peris-Sampedro, F;Stoltenborg, I;Le May, MV;Sole-Navais, P;Adan, RAH;Dickson, SL;
PMID: 34578979 | DOI: 10.3390/nu13093101
Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered. By means of a home-cage hidden palatable food paradigm, aiming to mimic ubiquitous exposure to olfactory food cues in Western societies, we investigated whether the latter could drive the overeating of plain chow in non-food-deprived male rats and explored the neural mechanisms involved, including the possible engagement of the orexigenic ghrelin system. The olfactory detection of a familiar, palatable food impacted upon meal patterns, by increasing meal frequency, to cause the persistent overconsumption of chow. In line with the orexigenic response observed, sensing the palatable food in the environment stimulated food-seeking and risk-taking behavior, which are intrinsic components of food acquisition, and caused active ghrelin release. Our results suggest that olfactory food cues recruited intermingled populations of cells embedded within the feeding circuitry within the Arc, including, notably, those containing the ghrelin receptor. These data demonstrate the leverage of ubiquitous food cues, not only for palatable food searching, but also to powerfully drive food consumption in ways that resonate with heightened hunger, for which the orexigenic ghrelin system is implicated.
Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15
Proceedings of the National Academy of Sciences of the United States of America
Cimino, I;Kim, H;Tung, YCL;Pedersen, K;Rimmington, D;Tadross, JA;Kohnke, SN;Neves-Costa, A;Barros, A;Joaquim, S;Bennett, D;Melvin, A;Lockhart, SM;Rostron, AJ;Scott, J;Liu, H;Burling, K;Barker, P;Clatworthy, MR;Lee, EC;Simpson, AJ;Yeo, GSH;Moita, LF;Bence, KK;Jørgensen, SB;Coll, AP;Breen, DM;O'Rahilly, S;
PMID: 34187898 | DOI: 10.1073/pnas.2106868118
An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic-pituitary-adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15 -/- mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.
Cannabidiol produces distinct U-shaped dose-response effects on cocaine conditioned place preference and associated recruitment of prelimbic neurons in male rats
Biological Psychiatry Global Open Science
Nedelescu, H;Wagner, G;De Ness, G;Carrol, A;Kerr, T;Wang, J;Zhang, S;Chang, S;Than, A;Emerson, N;Suto, N;Weiss, F;
| DOI: 10.1016/j.bpsgos.2021.06.014
Background Cannabidiol (CBD) has received attention for the treatment of Substance Use Disorders. In preclinical models of relapse, CBD attenuates drug seeking across several drugs of abuse, including cocaine. However, in these models, CBD has not been consistently effective. This inconsistency in CBD effects may be related to presently insufficient information on the full spectrum of CBD dose effects on drug-related behaviors. Methods We address this issue by establishing a full dose-response profile of CBD’s actions using expression of cocaine-induced conditioned place preference (CPP) as a model for drug motivated behavior in male rats, and by concurrently identifying dose-dependent effects of CBD on underlying neuronal activation as well as distinct neuronal phenotypes showing dose-dependent activation changes. Additionally, CBD levels in plasma and brain were established. Results CBD produced linear increases in CBD brain/plasma concentrations but suppressed CPP in a distinct U-shaped manner. In parallel with its behavioral effects, CBD produced U-shaped suppressant effects on neuronal activation in the prelimbic but not infralimbic cortex or nucleus accumbens core and shell. RNAscope in situ hybridization identified suppression of glutamatergic and GABAergic signaling in the prelimbic cortex as a possible cellular mechanism for the attenuation of cocaine CPP by CBD. Conclusions The findings extend previous evidence on the potential of CBD in preventing drug motivated behavior. However, CBD’s dose-response profile may have important dosing implications for future clinical applications and may contribute to the understanding of discrepant CBD effects on drug seeking in the literature.