Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for C-FOS

ACD can configure probes for the various manual and automated assays for C-FOS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for C-fos (310)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (54)
  • Image gallery (0)
Refine Probe List

Content for comparison

BaseScope™ Probe - BA-Hs-CD44-tv6-E5E6-C1
RNAscope™ Probe - Mm-Ahr-C4
RNAscope™ 2.5 LS Probe - Mm-Ahr-C4
Compare SelectedClear

Gene

  • C-fos (23) Apply C-fos filter
  • TBD (11) Apply TBD filter
  • Crh (7) Apply Crh filter
  • vGlut2 (5) Apply vGlut2 filter
  • Gad1 (4) Apply Gad1 filter
  • FOS (4) Apply FOS filter
  • AGRP (3) Apply AGRP filter
  • Adcyap1 (3) Apply Adcyap1 filter
  • Gad2 (3) Apply Gad2 filter
  • Chat (3) Apply Chat filter
  • Pomc (3) Apply Pomc filter
  • VGAT (3) Apply VGAT filter
  • OPN4 (2) Apply OPN4 filter
  • SLC32A1 (2) Apply SLC32A1 filter
  • Sst (2) Apply Sst filter
  • GFP (2) Apply GFP filter
  • Slc17a7 (2) Apply Slc17a7 filter
  • Ghsr (2) Apply Ghsr filter
  • Eomes (2) Apply Eomes filter
  • NeuN (2) Apply NeuN filter
  • Htr2c (1) Apply Htr2c filter
  • CALCA (1) Apply CALCA filter
  • CCK (1) Apply CCK filter
  • Mc4r (1) Apply Mc4r filter
  • TH (1) Apply TH filter
  • DRD1 (1) Apply DRD1 filter
  • DRD2 (1) Apply DRD2 filter
  • Prkcd (1) Apply Prkcd filter
  • ESR1 (1) Apply ESR1 filter
  • TAC1 (1) Apply TAC1 filter
  • Oxtr (1) Apply Oxtr filter
  • Fgf15 (1) Apply Fgf15 filter
  • Npy (1) Apply Npy filter
  • FOXP1 (1) Apply FOXP1 filter
  • IRAK4 (1) Apply IRAK4 filter
  • Grp (1) Apply Grp filter
  • Adcyap1r1 (1) Apply Adcyap1r1 filter
  • Slc17a6 (1) Apply Slc17a6 filter
  • OPRM1 (1) Apply OPRM1 filter
  • Slc6a3 (1) Apply Slc6a3 filter
  • mCherry (1) Apply mCherry filter
  • NLRP3 (1) Apply NLRP3 filter
  • VGlut (1) Apply VGlut filter
  • Fas (1) Apply Fas filter
  • VGluT1 (1) Apply VGluT1 filter
  • Gad67 (1) Apply Gad67 filter
  • cFos (1) Apply cFos filter
  • EYFP (1) Apply EYFP filter
  • DRD5 (1) Apply DRD5 filter
  • Kiss1 (1) Apply Kiss1 filter

Product

  • RNAscope Fluorescent Multiplex Assay (15) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (13) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (7) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (2) Apply TBD filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • Neuroscience (43) Apply Neuroscience filter
  • Pain (3) Apply Pain filter
  • Itch (2) Apply Itch filter
  • Addiction (1) Apply Addiction filter
  • Alzheimer’s disease (1) Apply Alzheimer’s disease filter
  • Anticipatory Nasusea (1) Apply Anticipatory Nasusea filter
  • Autism (1) Apply Autism filter
  • Behavior (1) Apply Behavior filter
  • Cancer (1) Apply Cancer filter
  • CGT (1) Apply CGT filter
  • Chronic Pain (1) Apply Chronic Pain filter
  • Depression (1) Apply Depression filter
  • Exercise (1) Apply Exercise filter
  • Glucagon secretion (1) Apply Glucagon secretion filter
  • Hypothermia (1) Apply Hypothermia filter
  • Hypoxia (1) Apply Hypoxia filter
  • Inflammation (1) Apply Inflammation filter
  • Metabolism (1) Apply Metabolism filter
  • Neuroprotective therapies (1) Apply Neuroprotective therapies filter
  • Other: Anxiety (1) Apply Other: Anxiety filter
  • Other: Endocrinology (1) Apply Other: Endocrinology filter
  • Other: Immunoreactice Cells (1) Apply Other: Immunoreactice Cells filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Psychiatry (1) Apply Psychiatry filter
  • Schizophrenia (1) Apply Schizophrenia filter
  • Sighing (1) Apply Sighing filter
  • Social Dysfunction (1) Apply Social Dysfunction filter

Category

  • Publications (54) Apply Publications filter
p53-dependent c-Fos expression is a marker but not executor for motor neuron death in spinal muscular atrophy mouse models

Frontiers in cellular neuroscience

2022 Nov 07

Buettner, JM;Sowoidnich, L;Gerstner, F;Blanco-Redondo, B;Hallermann, S;Simon, CM;
PMID: 36419936 | DOI: 10.3389/fncel.2022.1038276

The activation of the p53 pathway has been associated with neuronal degeneration in different neurological disorders, including spinal muscular atrophy (SMA) where aberrant expression of p53 drives selective death of motor neurons destined to degenerate. Since direct p53 inhibition is an unsound therapeutic approach due carcinogenic effects, we investigated the expression of the cell death-associated p53 downstream targets c-fos, perp and fas in vulnerable motor neurons of SMA mice. Fluorescence in situ hybridization (FISH) of SMA motor neurons revealed c-fos RNA as a promising candidate. Accordingly, we identified p53-dependent nuclear upregulation of c-Fos protein in degenerating motor neurons from the severe SMNΔ7 and intermediate Smn2B/- SMA mouse models. Although motor neuron-specific c-fos genetic deletion in SMA mice did not improve motor neuron survival or motor behavior, p53-dependent c-Fos upregulation marks vulnerable motor neurons in different mouse models. Thus, nuclear c-Fos accumulation may serve as a readout for therapeutic approaches targeting neuronal death in SMA and possibly other p53-dependent neurodegenerative diseases.
Mouse Brain Regions Activated By Isoflurane Anesthesia Marked By C-Fos Labeling

The Journal of Pain

2023 Apr 01

Yuan, M;Zhao, J;McGinnis, A;Mathew, J;Wang, F;Ji, R;
| DOI: 10.1016/j.jpain.2023.02.115

Although anesthesia is commonly used in the fields of medicine and scientific research, the neural mechanisms and circuits through which it produces analgesia is still unclear. Utilizing c-fos labeling of neuronal activity, this project aimed to investigate the brain regions of C57BL/6 mice, which become activated subsequent to isoflurane anesthesia. RNAscope in situ hybridization was used to examine c-fos mRNA activation in the brain. Confocal microscopy was utilized to locate and characterize brain regions displaying c-Fos activation. Finally, manual quantification of c-fos activation in identified brain regions was conducted through Fiji software. The brain regions identified resemble brain areas that have been associated with pain regulation in literature, including the central nucleus of amygdala (CeA), paraventricular nucleus of the hypothalamus (PVN), centrally-projecting Edinger-Westphal nucleus (EWcp), piriform cortex (PC), and para-supraoptic nucleus (ParaSON). Furthermore, the CeA displayed the greatest average number of positive cells and the densest activation, supporting its importance in pain and analgesia. The identified brain regions validate the prominent findings of prior studies, which also found c-Fos activation subsequent to isoflurane anesthesia in the CeA, PVN, and ParaSON (Hua et al., Nat Neurosci, 2020). New regions of c-fos activation, including the EWcp and PC, found in this study are in need of further exploration. PC activation may also be caused by smell from isoflurane. The connections and coordination which the identified brain regions have in producing analgesia is also an area for future investigation. This study is supported by Duke University Anesthesiology Fund and NIH grant R01-DE29342. This study is supported by Duke University Anesthesiology Fund and NIH grant R01-DE29342.
Quantitative analysis of RNAscope staining for c-fos Expression in Mouse Brain Tissue as a Measure of Neuronal Activation

MethodsX

2021 Apr 01

Cosi, C;Millar, M;Beltran, M;Sherry, L;Gatti-McArthur, S;
| DOI: 10.1016/j.mex.2021.101348

The expression of c-fos mRNA is an indirect marker of neuronal activity. RNAscope ACD Bio RNAscope (now Biotechne) is a proprietary in-situ mRNA detection technology using branched DNA amplification and z paired probes to deliver a robust and specific assay designed primarily for use on formalin fixed paraffin sections [1]. In the present study we adapted this technology to be used in frozen sections to allow quantitative analysis of c-fos gene expression in different mouse brain regions during neuropharmacology studies. The method was applied by Cosi et al. 2021 [2] and the image analysis is described here in details. • The patented RNAscope (ACD Bio) flourescent in-situ hybridisation technology designed primarily for use on formalin fixed paraffin sections was adapted to be used on frozen section from mouse brain. • We carefully controlled sample preparation and handling to maximise mRNA preservation and used the fluorescent properties of the fast Red substrate combined with fluorescent whole slide scanning and image analysis. • A customized algorithm was set up for image analysis • The method developed permitted the quantitative analysis of c-fos expression in specific brain regions from whole sections.
Lipopolysacharide rapidly and completely suppresses AgRP neuron-mediated food intake in male mice

Endocrinology.

2016 Apr 25

Liu Y, Huang Y, Liu T, Wu H, Cui H, Gautron L.
PMID: 27111742 | DOI: -

While Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by pro-inflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS; 100 μ g/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding, but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia.

Quanty-cFOS, a Novel ImageJ/Fiji Algorithm for Automated Counting of Immunoreactive Cells in Tissue Sections

Cells

2023 Feb 23

Beretta, C;Liu, S;Stegemann, A;Gan, Z;Wang, L;Tan, L;Kuner, R;
| DOI: 10.3390/cells12050704

Analysis of neural encoding and plasticity processes frequently relies on studying spatial patterns of activity-induced immediate early genes’ expression, such as c-fos. Quantitatively analyzing the numbers of cells expressing the Fos protein or c-fos mRNA is a major challenge owing to large human bias, subjectivity and variability in baseline and activity-induced expression. Here, we describe a novel open-source ImageJ/Fiji tool, called ‘Quanty-cFOS’, with an easy-to-use, streamlined pipeline for the automated or semi-automated counting of cells positive for the Fos protein and/or c-fos mRNA on images derived from tissue sections. The algorithms compute the intensity cutoff for positive cells on a user-specified number of images and apply this on all the images to process. This allows for the overcoming of variations in the data and the deriving of cell counts registered to specific brain areas in a highly time-efficient and reliable manner. We validated the tool using data from brain sections in response to somatosensory stimuli in a user-interactive manner. Here, we demonstrate the application of the tool in a step-by-step manner, with video tutorials, making it easy for novice users to implement. Quanty-cFOS facilitates a rapid, accurate and unbiased spatial mapping of neural activity and can also be easily extended to count other types of labelled cells.
A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance

Nature communications

2022 Dec 03

Yan, JJ;Ding, XJ;He, T;Chen, AX;Zhang, W;Yu, ZX;Cheng, XY;Wei, CY;Hu, QD;Liu, XY;Zhang, YL;He, M;Xie, ZY;Zha, X;Xu, C;Cao, P;Li, H;Xu, XH;
PMID: 36463200 | DOI: 10.1038/s41467-022-35211-7

Behavioral observations suggest a connection between anxiety and predator defense, but the underlying neural mechanisms remain unclear. Here we examine the role of the anterior hypothalamic nucleus (AHN), a node in the predator defense network, in anxiety-like behaviors. By in vivo recordings in male mice, we find that activity of AHN GABAergic (AHNVgat+) neurons shows individually stable increases when animals approach unfamiliar objects in an open field (OF) or when they explore the open-arm of an elevated plus-maze (EPM). Moreover, object-evoked AHN activity overlap with predator cue responses and correlate with the object and open-arm avoidance. Crucially, exploration-triggered optogenetic inhibition of AHNVgat+ neurons reduces object and open-arm avoidance. Furthermore, retrograde viral tracing identifies the ventral subiculum (vSub) of the hippocampal formation as a significant input to AHNVgat+ neurons in driving avoidance behaviors in anxiogenic situations. Thus, convergent activation of AHNVgat+ neurons serves as a shared mechanism between anxiety and predator defense to promote behavioral avoidance.
Slow development of bladder malfunction parallels spinal cord fiber sprouting and interneurons' loss after spinal cord transection

Experimental neurology

2021 Nov 24

Sartori, AM;Hofer, AS;Scheuber, MI;Rust, R;Kessler, TM;Schwab, ME;
PMID: 34826427 | DOI: 10.1016/j.expneurol.2021.113937

Neurogenic lower urinary tract dysfunction typically develops after spinal cord injury. We investigated the time course and the anatomical changes in the spinal cord that may be causing lower urinary tract symptoms following injury. Rats were implanted with a bladder catheter and external urethral sphincter electromyography electrodes. Animals underwent a large, incomplete spinal transection at the T8/9 spinal level. At 1, 2-3, and 4 weeks after injury, the animals underwent urodynamic investigations. Urodynamic investigations showed detrusor overactivity and detrusor-sphincter-dyssynergia appearing over time at 3-4 weeks after injury. Lower urinary tract dysfunction was accompanied by an increase in density of C-fiber afferents in the lumbosacral dorsal horn. CRF-positive Barrington's and 5-HT-positive bulbospinal projections drastically decreased after injury, with partial compensation for the CRF fibers at 3-4 weeks. Interestingly, a decrease over time was observed in the number of GABAergic neurons in the lumbosacral dorsal horn and lamina X, and a decrease of glutamatergic cells in the dorsal horn. Detrusor overactivity and detrusor-sphincter-dyssynergia might therefore arise from a discrepancy in inhibitory/excitatory interneuron activity in the lumbosacral cord as well as input changes which develop over time after injury. The processes point to spinal plastic changes leading to malfunction of the important physiological pathway of lower urinary tract control.
Oxytocin Receptors in the Mouse Centrally-Projecting Edinger-Westphal Nucleus and Their Potential Functional Significance for Thermoregulation

SSRN Electronic Journal

2022 Mar 15

Li, J;Ryabinin, A;
| DOI: 10.2139/ssrn.4033172

The centrally-projecting Edinger-Westphal nucleus (EWcp) has been shown to contribute to regulation of multiple functions, including responses to stress and fear, attention, food consumption, addiction, body temperature and maternal behaviors. However, receptors involved in regulation of these behaviors through EWcp remain poorly characterized. On the other hand, the oxytocin peptide (OXT) is also known to regulate a substantial number of physiological responses and behaviors. Here we show that OXT receptors (OXTR) are expressed in EWcp of male and female C57BL/6J mice. These receptors are present on urocortin 1 (UCN)-containing neurons of EWcp and, to a lesser extent, on neurons expressing the vesicular glutamate transporter 2 (vGlut2) of EWcp. Using RNAscope in situ hybridization, we show that UCN and vGlut2 are two intermingled but independent subpopulations of EWcp and characterize their relationship with other populations of neurons in the EWcp. Using immunohistochemistry, we show that intraperitoneal (IP) administration of OXT can induce c-Fos in OXTR-containing neurons of EWcp, suggesting that these receptors on EWcp neurons are functional. A follow up study showed that injection of a dose of OXT (7.7 mg/kg, IP) capable of inducing c-Fos in EWcp also results in temporary hypothermia in mice, while a lower dose (2.3 mg/kg, IP) results in a weaker hypothermia. These studies for the first time describe the EWcp as a site of functionally-significant expression of OXTR. The contribution of these receptors to regulation of various functions of EWcp and OXT needs to be deciphered.
Endocannabinoid control of the insular-bed nucleus of the stria terminalis circuit regulates negative affective behavior associated with alcohol abstinence.

Neuropsychopharmacology.

2018 Nov 02

Centanni SW, Morris BD, Luchsinger JR, Bedse G, Fetterly TL, Patel S, Winder DG.
PMID: 30390064 | DOI: 10.1038/s41386-018-0257-8

Negative affect is a core symptom domain associated with an array of neurological and psychiatric disorders and is only partially targeted by current therapies, highlighting the need for better, more targeted treatment options. This study focuses on negative affective symptoms associated with prolonged alcohol abstinence, one of the leading causes of relapse. Using a mouse model of chronic alcohol consumption followed by forced abstinence (CDFA), prolonged alcohol abstinence increased c-fos expression and spontaneous glutamatergic neurotransmission in the dorsal bed nucleus of the stria terminalis (dBNST), a region heavily implicated in negative affect in both humans and rodents. Further, pharmacologically enhancing eCBs with JZL184 prevents abstinence-induced increases in dBNST neuronal activity, underscoring the therapeutic potential of drugs targeting the brain's eCB system. Next, we used a channelrhodopsin-assisted mapping strategy to identify excitatory inputs to the dBNST that could contribute to CDFA-induced negative affect. We identified the insular cortex (insula), a region involved in regulating interoception, as a dense, functional, endocannabinoid-sensitive input to the dBNST. Using a chemogenetic strategy to locally mimic eCB signaling, we demonstrate that the insula strongly influences CDFA behavioral and BNST neuronal activity. Lastly, we used viral anterograde transsynaptic expression in combination with a Gq-DREADD to selectively recruit dBNST neurons receiving insula projections. Chemogenetic recruitment of these neurons mimicked behavioral and c-fos responses observed in CDFA. Collectively, this study supports a role for the insula-BNST neural circuit in negative affective disturbances and highlights the therapeutic potential of the endocannabinoid system for treating negative affective disorders.

Risperidone stimulates food intake and induces body weight gain via the hypothalamic arcuate nucleus 5-HT2c receptor-NPY pathway

CNS Neurosci Ther.

2019 Dec 27

Wan XQ, Zeng F, Huang XF, Yang HQ, Wang L, Shi YC, Zhang ZH, Lin S
PMID: 31880085 | DOI: 10.1111/cns.13281

AIMS: Many patients taking risperidone for the treatment of psychiatric disorders experience substantial body weight gain. Researchers have speculated that risperidone induces obesity by modulating central signals; however, the precise central mechanisms involved remain to be fully elucidated. METHODS: Twenty-four C57BL/6J mice were divided into four groups: a control group; a risperidone-treated group; a lorcaserin-treated group; and a combined risperidone + lorcaserin-treated group. The mice were received the corresponding treatments for 4 weeks, and their brains were collected for in situ hybridization analysis. A subset of C57BL/6J mice was administrated with risperidone or placebo, and brains were collected 60 minutes post-treatment for determination of c-fos activity. In addition, brains of NPY-GFP mice treated with or without risperidone were collected to perform colocalization of NPY and c-fos, as well as NPY and 5-HT2c receptor using immunohistochemistry. RESULTS: There was significantly elevated c-fos expression in the hypothalamic arcuate nucleus (Arc) of risperidone-treated mice. More than 68% c-fos-positive neurons were NPY-expressing neurons. Furthermore, in situ hybridization revealed that Arc NPY mRNA expression was significantly increased in the risperidone-treated group compared with control group. Moreover, we identified that 95% 5-HT2c receptors were colocalized with NPY positive neurons, and increased Arc NPY mRNA expression induced by risperidone was markedly reduced by cotreatment with lorcaserin, a specific 5-HT2c receptor agonist. CONCLUSION: Our findings provide critical insight into the mechanisms underlying antipsychotic-induced obesity, which may assist the development of therapeutic strategies to address metabolic side effects of risperidone.
PACAP controls endocrine and behavioral stress responses via separate brain circuits

Biological Psychiatry Global Open Science

2023 Apr 01

Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001

Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Male and female rats exhibit comparable gaping behavior but activate brain regions differently during expression of conditioned nausea

Behavioural pharmacology

2022 Jun 01

Bernanke, A;Sette, S;Hernandez, N;Zimmerman, S;Murphy, J;Francis, R;Reavis, Z;Kuhn, C;
PMID: 35621171 | DOI: 10.1097/FBP.0000000000000676

Twenty-five to fifty percent of patients undergoing chemotherapy will develop anticipatory nausea and vomiting (ANV), in which symptoms occur in anticipation of treatment. ANV is triggered by environmental cues and shows little response to traditional antiemetic therapy, suggesting that unique neural pathways mediate this response. Understanding the underlying neural mechanisms of this disorder is critical to the development of novel therapeutic interventions. The purpose of the present study was to identify brain areas activated during ANV and characterize sex differences in both the behavior and the brain areas activated during ANV. We used a rat model of ANV by pairing a novel context with the emetic drug lithium chloride (LiCl) to produce conditioned nausea behaviors in the LiCl-paired environment. We quantitated gaping, an analog of human vomiting, after acute or repeated LiCl in a unique environment. To identify brain regions associated with gaping, we measured c-fos activation by immunochemical staining after these same treatments. We found that acute LiCl activated multiple brain regions including the supraoptic nucleus of the hypothalamus, central nucleus of the amygdala, nucleus of the solitary tract and area postrema, none of which were activated during ANV. ANV activated c-fos expression in the frontal cortex, insula and paraventricular nucleus of the hypothalamus of males but not females. These data suggest that therapies such as ondansetron which target the area postrema are not effective in ANV because it is not activated during the ANV response. Further studies aimed at characterizing the neural circuits and cell types that are activated in the conditioned nausea response will help identify novel therapeutic targets for the treatment of this condition, improving both quality of life and outcomes for patients undergoing chemotherapy.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?