Publication

Current and future perspectives of single-cell multi-omics technologies in cardiovascular research

Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research.

Sourcing high tissue quality brains from deceased wild primates with known socio-ecology

The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed.

Structural placental changes in women with intra-pregnancy novel coronavirus infection COVID-19 (review)

Introduction. During the COVID-19 pandemic, the question regarding an effect of related infection on the body of pregnant women and the fetoplacental complex has emerged, with many aspects of this issue still being unknown. At the moment, it has been proven that in some cases the course of COVID-19 can be accompanied by severe systemic inflammatory reaction leading to hypercoagulable state.Aim: to search for evidence of a direct and/or indirect effect of SARS-CoV-2 infection on human placenta structure.Materials and Methods.

The Midbody and Midbody Remnant are Assembly Sites for RNA and Localized Translation

The midbody (MB) is a transient structure at the spindle midzone that is required for cytokinesis, the terminal stage of cell division. Long ignored as a vestigial remnant of cytokinesis, we now know MBs are released post-abscission as extracellular vesicles called MB remnants (MBRs) and can modulate cell proliferation, fate decisions, tissue polarity, neuronal architecture, and tumorigenic behavior.

Epigenetic Factors Related to Low Back Pain: A Systematic Review of the Current Literature

Low back pain (LBP) is one of the most common causes of pain and disability. At present, treatment and interventions for acute and chronic low back pain often fail to provide sufficient levels of pain relief, and full functional restoration can be challenging. Considering the significant socio-economic burden and risk-to-benefit ratio of medical and surgical intervention in low back pain patients, the identification of reliable biomarkers such as epigenetic factors associated with low back pain could be useful in clinical practice.

A Potential Novel Treatment for Chronic Cough in Long COVID Patients: Clearance of Epipharyngeal Residual SARS-CoV-2 Spike RNA by Epipharyngeal Abrasive Therapy

A major target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the epipharyngeal mucosa. Epipharyngeal abrasive therapy (EAT) is a Japanese treatment for chronic epipharyngitis. EAT is a treatment for chronic epipharyngitis in Japan that involves applying zinc chloride as an anti-inflammatory agent to the epipharyngeal mucosa. Here, we present a case of a 21-year-old man with chronic coughing that persisted for four months after a diagnosis of mild coronavirus disease 2019 (COVID-19), who was treated by EAT.

Using single-molecule fluorescence in situ hybridization and immunohistochemistry to count RNA molecules in single cells in zebrafish embryos

Taming gene expression variability is critical for robust pattern formation during embryonic development. Here, we describe an optimized protocol for single-molecule fluorescence in situ hybridization and immunohistochemistry in zebrafish embryos. We detail how to count segmentation clock RNAs and calculate their variability among neighboring cells. This approach is easily adaptable to count RNA numbers of any gene and calculate transcriptional variability among neighboring cells in diverse biological settings.

Anti-Inflammatory Role of TRPV4 in Human Macrophages

The pathology of skin immune diseases such as atopic dermatitis is closely related to the overproduction of cytokines by macrophages. Although the pathological functions of macrophages in skin are known, mechanisms of how they detect the tissue environment remain unknown. TRPV4, a nonselective cation channel with high Ca2+ permeability, is activated at physiological temperatures from 27 to 35°C and involved in the functional control of macrophages. However, the relationship between TRPV4 function in macrophages and skin immune disease is unclear.

Visualizing and Quantifying mRNA Localization at the Invasive Front of 3D Cancer Spheroids

Localization of mRNAs at the front of migrating cells is a widely used mechanism that functionally supports efficient cell movement. It is observed in single cells on two-dimensional surfaces, as well as in multicellular three-dimensional (3D) structures and in tissue in vivo. 3D multicellular cultures can reveal how the topology of the extracellular matrix and cell-cell contacts influence subcellular mRNA distributions. Here we describe a method for mRNA imaging in an inducible system of collective cancer cell invasion.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com