Publication

Liver alterations and detection of SARS-CoV-2 RNA and proteins in COVID-19 autopsies

The most severe alterations in Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection are seen in the lung. However, other organs also are affected. Here, we report histopathologic findings in the liver and detection of viral proteins and RNA in COVID-19 autopsies performed at the Semmelweis University (Budapest, Hungary). Between March 2020 through March 2022, 150 autopsies on patients who died of COVID-19 were analyzed.

Dendritic spine loss in epileptogenic Type II focal cortical dysplasia: Role of enhanced classical complement pathway activation

Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies.

FOXF1 Regulates Alveolar Epithelial Morphogenesis Through Transcriptional Activation of Mesenchymal WNT5A

Mutations in the FOXF1 gene, encoding the mesenchymal Forkhead Box (FOX) transcription factor, are linked to Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV), a severe congenital disorder associated with the loss of alveolar capillaries and lung hypoplasia. While proangiogenic functions of FOXF1 have been extensively studied, the role of FOXF1 in mesenchymal-epithelial signaling during lung development remains uncharacterized.

Evidence of Residual Ongoing Viral Replication in Chronic Hepatitis B Patients Successfully Treated with Nucleos(t)ide Analogues

Chronic hepatitis B is usually treated with nucleos(t)ide analogues (NAs). However, a cure is rarely achieved even with years of treatment. Here, we investigated whether viral replication is completely halted and how long covalently closed circular DNA (cccDNA) persists in NAs successfully treated patients.A series of longitudinal serum samples and a collection of cross-sectional liver biopsies were obtained from NAs successfully treated patients. Viral variants in serum HBV RNA were enumerated by deep sequencing.

Chronic demyelination of rabbit lesions is attributable to failed oligodendrocyte progenitor cell repopulation

The failure of remyelination in the human CNS contributes to axonal injury and disease progression in multiple sclerosis (MS). In contrast to regions of chronic demyelination in the human brain, remyelination in murine models is preceded by abundant oligodendrocyte progenitor cell (OPC) repopulation, such that OPC density within regions of demyelination far exceeds that of normal white matter (NWM).

Divergent modulation of pain and anxiety by GABAergic neurons in the ventrolateral periaqueductal gray and dorsal raphe

The ventrolateral periaqueductal gray (vlPAG) collaborates with the dorsal raphe (DR) in pain regulation and emotional response. However, the roles of vlPAG and DR γ-aminobutyric acid (GABA)-ergic neurons in regulating nociception and anxiety are contradictory and poorly understood. Here, we observed that pharmacogenetic co-activation of vlPAG and DR GABAergic (vlPAG-DRGABA+) neurons enhanced sensitivity to mechanical stimulation and promoted anxiety-like behavior in naïve mice.

LncRNA IL21-AS1 interacts with hnRNPU protein to promote IL21 overexpression and aberrant differentiation of Tfh cells in systemic lupus erythematosus

The aberrant differentiation of T follicular helper (Tfh) cells plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of regulating Tfh cells differentiation remains unclear. Long noncoding RNAs (lncRNAs) act as important regulators in the processes of innate and adaptive immune response.

Heterogeneous levels of delta-like 4 within a multinucleated niche cell maintains muscle stem cell diversity

The quiescent muscle stem cell (QSC) pool is heterogeneous and generally characterized by the presence and levels of intrinsic myogenic transcription factors. Whether extrinsic factors maintain the diversity of states across the QSC pool remains unknown. The muscle fiber is a multinucleated syncytium that serves as a niche to QSCs, raising the possibility that the muscle fiber regulates the diversity of states across the QSC pool.

Glycolytic regulation of intestinal stem cell self-renewal and differentiation

The Intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. An imbalance in this highly regimented process within the intestinal crypts is associated with several intestinal pathologies. Although metabolic changes are known to play a pivotal role in cell proliferation and differentiation, how glycolysis contributes to intestinal epithelial homeostasis remains to be defined.Small intestines were harvested from mice with specific hexokinase 2 (HK2) deletion in the intestinal epithelium or LGR5+ stem cells.

Somatosensory neurons express specific sets of lincRNAs, and lincRNA CLAP promotes itch sensation in mice

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com