Publication

Genomic integration and expression of Felis catus papillomavirus type 2 oncogenes in feline Merkel cell carcinoma

The involvement of Felis catus papillomavirus type 2 (FcaPV2) in feline Merkel cell carcinoma (MCC) has been previously hypothesized. In this study, the expression and localization of FcaPV2 oncogene mRNA, the integration of FcaPV2 genes, and p53 mutations in feline MCC were examined by RNAscope in situ hybridization (ISH), whole genome sequencing (WGS), and Sanger DNA sequencing, respectively.

Diagnostic utility of CSF1 immunohistochemistry in tenosynovial giant cell tumor for differentiating from giant cell-rich tumors and tumor-like lesions of bone and soft tissue

Tenosynovial giant cell tumor (TSGCT) is a benign fibrohistiocytic tumor that affects the synovium of joints, bursa, and tendon sheaths and is categorized into localized TSGCT (LTSGCT) and diffuse TSGCT (DTSGCT). LTSGCT and DTSGCT are characterized by recurrent fusions involving the colony-stimulating factor 1 (CSF1) gene and its translocation partner collagen type VI alpha 3 chain. The fusion gene induces intratumoral overexpression of CSF1 mRNA and CSF1 protein.

Identification of a Novel Long Non-coding RNA, lnc-ATMIN-4:2, and its Clinicopathological and Prognostic Significance in Advanced Gastric Cancer

Long non-coding RNAs (lncRNAs) are emerging as significant regulators of gene expression and a novel promising biomarker for cancer diagnosis and prognosis. This study identified a novel, differentially expressed lncRNA in advanced gastric cancer (AGC), Inc-ATMIN-4:2, and evaluated its clinicopathological and prognostic significance.Whole transcriptome sequencing was performed to identify differentially expressed lncRNAs in AGC tissue samples.

EBV persistence in gastric cancer cases conventionally classified as EBER-ISH negative

The Epstein-Barr virus (EBV) causes various B-cell lymphomas and epithelial malignancies, including gastric cancer (GC) at frequencies ranging from 5 to 10% in adenocarcinomas (ADK) to 80% in GC with lymphoid stroma (GCLS).

Systemic Lipopolysaccharide Exposure Exacerbates Choroidal Neovascularization in Mice

This study aims to investigate the effect of a systemic lipopolysaccharide (LPS) stimulus in the course of laser-induced choroidal neovascularization (CNV) in C57BL/6 J mice. A group of CNV-subjected mice received 1 mg/kg LPS via the tail vein immediately after CNV induction. Mouse eyes were monitored in vivo with fluorescein angiography for 2 weeks. In situ hybridization and flow cytometry were performed in the retina at different time points.

In mice and humans, brain microvascular contractility matures postnatally

Although great efforts to characterize the embryonic phase of brain microvascular system development have been made, its postnatal maturation has barely been described. Here, we compared the molecular and functional properties of brain vascular cells on postnatal day (P)5 vs. P15, via a transcriptomic analysis of purified mouse cortical microvessels (MVs) and the identification of vascular-cell-type-specific or -preferentially expressed transcripts.

Circulating CD200 is increased in the secretory phase of women with endometriosis as is endometrial mRNA, and endometrial stromal cell CD200R1 is increased in spite of reduced mRNA

Estrogen-dependent extrauterine implantation and growth of menstrual endometrial tissue affects roughly 10% of reproductive age women and depends on suppression of local innate immune defenses to prevent ectopic tissue rejection. Immunohistochemistry has shown the immune check-point inhibitor CD200 which can suppress rejection is expressed in eutopic endometrium and in ectopic deposits.

Analysis of Human Papilloma Virus Content and Integration in Mucoepidermoid Carcinoma

Mucoepidermoid Carcinomas (MEC) represent the most common malignancies of salivary glands. Approximately 50% of all MEC cases are known to harbor CRTC1/3-MAML2 gene fusions, but the additional molecular drivers remain largely uncharacterized. Here, we sought to resolve controversy around the role of human papillomavirus (HPV) as a potential driver of mucoepidermoid carcinoma. Bioinformatics analysis was performed on 48 MEC transcriptomes. Subsequent targeted capture DNA sequencing was used to annotate HPV content and integration status in the host genome.

Utility of high-risk HPV RNA chromogenic in situ hybridization in cytology smears and liquid-based preparations from metastatic head and neck squamous cell carcinoma

High-risk human papillomavirus (HR-HPV) status is critical for the diagnosis, prognosis, and treatment of patients with oropharyngeal squamous cell carcinoma (OPSCC). Patients often present with enlarged cervical nodes, and fine-needle aspiration cytology (FNAC) is frequently the initial diagnostic procedure. Although p16 is the most widely used surrogate marker, problems with interpretation can limit its utility in FNAC. HR-HPV RNA in situ hybridization (ISH) has emerged as a specific way to assess HPV status on cell block preparations of cervical nodes.

The implication of hinge 1 and hinge 4 in micro-dystrophin gene therapy for Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by dystrophin deficiency. Dystrophin consists of the amino terminus, central rod domain with 24 spectrin-like repeats and four hinges (H), cysteine-rich domain, and carboxyl terminus. Several highly abbreviated micro-dystrophins are currently in clinical trials. They all carry H1 and H4. Here we investigated whether these two hinges are essential for micro-dystrophin function in murine DMD models.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com