Publication

Unravelling the landscape of skin cancer through single-cell transcriptomics

The human skin is a complex organ that forms the first line of defense against pathogens and external injury. It is composed of a wide variety of cells that work together to maintain homeostasis and prevent disease, such as skin cancer. The exponentially rising incidence of skin malignancies poses a growing public health challenge, particularly when the disease course is complicated by metastasis and therapeutic resistance.

Enamel defects in Acp4R110C/R110C mice and human ACP4 mutations

Human ACP4 (OMIM*606362) encodes a transmembrane protein that belongs to histidine acid phosphatase (ACP) family. Recessive mutations in ACP4 cause non-syndromic hypoplastic amelogenesis imperfecta (AI1J, OMIM#617297). While ACP activity has long been detected in developing teeth, its functions during tooth development and the pathogenesis of ACP4-associated AI remain largely unknown. Here, we characterized 2 AI1J families and identified a novel ACP4 disease-causing mutation: c.774_775del, p.Gly260Aspfs*29.

Conditional deletion of KOR (Oprk1) in kisspeptin cells does not alter LH pulses, puberty, or fertility in mice

Classic pharmacological studies suggested that endogenous dynorphin-KOR signaling is important for reproductive neuroendocrine regulation. With the seminal discovery of an interconnected network of hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B, and dynorphin ("KNDy neurons"), the KNDy hypothesis was developed to explain how GnRH and LH pulses are generated. Key to this hypothesis is dynorphin released from KNDy neurons acting paracrinely on other KNDy neurons via kappa opioid receptor (KOR) signaling to terminate neural "pulse" events.

Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects

Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties.

MCC is a centrosomal protein that relocalizes to non-centrosomal apical sites during intestinal cell differentiation

The gene mutated in colorectal cancer (MCC) encodes a coiled-coil protein implicated, as its name suggests, in the pathogenesis of hereditary human colon cancer. To date, however, the contributions of MCC to intestinal homeostasis and disease remain unclear. Here, we examine the subcellular localization of MCC, both at the mRNA and protein levels, in the adult intestinal epithelium. Our findings reveal that Mcc transcripts are restricted to proliferating crypt cells, including Lgr5+ stem cells, where the Mcc protein is distinctly associated with the centrosome.

Somatostatin-Positive Neurons in the Rostral Zona Incerta Modulate Innate Fear-Induced Defensive Response in Mice

Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus.

Stress response protein REDD1 promotes diabetes-induced retinal inflammation by sustaining canonical NF-κB signaling

Inflammation contributes to the progression of retinal pathology caused by diabetes. Here, we investigated a role for the stress response protein regulated in development and DNA damage response 1 (REDD1) in the development of retinal inflammation. Increased REDD1 expression was observed in the retina of mice after 16-weeks of streptozotocin (STZ)-induced diabetes, and REDD1 was essential for diabetes-induced pro-inflammatory cytokine expression.

449 Pathways balancing basal mucin and cystic fibrosis transmembrane conductance regulator-mediated fluid secretion in the human small airway

Background: Mucociliary clearance is heavily affected by mucus concentration, with its attendant biophysical properties. Mucus concentration is tightly regulated by luminal mucin secretion and mucus hydration. Although small (distal) airways (

450 Pro-inflammatory Orai1 activity is elevated in people with cystic fibrosis regardless of elexacaftor/tezacaftor/ivacaftor treatment

Background: Orai1 is a plasma membrane Ca2+ channel that is involved in store-operated calcium entry (SOCE). In pulmonary cells, SOCE regulates gene expression and stimulates cytokine, mucin, and protease secretion. Activation of Orai1/SOCE results in recruitment of neutrophils to the lungs. Orai1 activation is also upstream of transcription factors such as nuclear factor of activated T cells, which facilitate onset of inflammation. In cystic fibrosis (CF), the immune response is dysregulated, and the lung is chronically inflamed, but Orai1 expression in the CF lung is poorly understood.

451 Robust, efficient workflow to establish, culture, and functionally assess primary-isolated airway epithelial cells

Background: Air-liquid interface (ALI) and organoid culture are key techniques for differentiating human airway epithelial cells (HAECs). The efficiency and robustness of these assays often depends on the quality of primary-isolated cells, but primary cell isolation workflows, with which the user controls the choice of isolation method, cell culture medium, and culture format, may reduce reproducibility.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com