Publications

Gut Microbiota And Metabolites Drive Persistent Pain In Sickle Cell Disease

Severe debilitating pain is the most common complication and reason for hospitalization for individuals with sickle cell disease (SCD), a genetic blood disorder that affects 100,000 people in the US and over 3 million worldwide. Despite this, the biological basis of chronic SCD pain is not fully understood. Using transgenic SCD mice and fecal material transplant paradigms, we determined that gastrointestinal tract contents drive persistent SCD pain. Mechanical allodynia was temporarily alleviated in SCD mice following fecal transplant from wildtype animals.

Genetic Depletion Of Acid-Sensing Ion Channel 3 In Macrophage/Monocytes Prevents Development Of Activity-Induced Muscle Pain

We developed an animal model of activity-induced muscle pain that combines muscle fatigue with a non-painful, low-dose muscle insult. We previously showed that pharmacological blockade of acid-sensing ion channel 3 (ASIC3) in muscle prevents the activity-induced muscle pain, however, genetic deletion of ASIC3 in primary afferents innervating muscle has no effect on pain. We hypothesized that genetic deletion of ASIC3 on macrophages would prevent activity-induced muscle pain. ASIC3fl/fl mice were crossed with Cx3cr1-Cre mice to generate macrophage/monocyte-specific deletion of ASIC3.

A Selective Peptidomimetic Modulator Of Cav2.2 (N-Type) Voltage-Gated Calcium Channels For Chronic Pain

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated pain targets. Clinical block of Cav2.2 (e.g., with Prialt) or indirect modulation (e.g., with gabapentinoids) mitigates chronic pain but is constrained by side effects. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release and pain.

Development And Validation Of Painface, A Software Platform That Simplifies And Standardizes Mouse Grimace Analyses

Facial grimaces are now commonly used to quantify spontaneous pain in mice and other mammalian species, but scoring remains subjective and relies on humans with very different levels of proficiency. Here, we developed a Mouse Grimace Scale (MGS) for black-coated (C57BL/6) mice consisting of four facial action units (orbitals, nose, ears, whiskers). We used this scale to generate ground truth data from over 70,000 images of black mice in different settings.

The Functional Organization Of The Opioid System In Dorsal Root Ganglion Neurons

Targeting specific opioid receptor types in distinct sensory neurons could lead to safer and more effective treatments against pain. However, the extent to which different DRG neurons that express opioid receptors (MOR, DOR, KOR) innervate distinct organs, and what sensory information is encoded by these neurons, represent long-standing questions in the field. To fill this knowledge gap, we utilized novel knock-in mouse lines in which the DNA recombinases Cre and/or Flp are expressed in opioid receptor-positive DRG neurons.

Mouse Brain Regions Activated By Isoflurane Anesthesia Marked By C-Fos Labeling

Although anesthesia is commonly used in the fields of medicine and scientific research, the neural mechanisms and circuits through which it produces analgesia is still unclear. Utilizing c-fos labeling of neuronal activity, this project aimed to investigate the brain regions of C57BL/6 mice, which become activated subsequent to isoflurane anesthesia. RNAscope in situ hybridization was used to examine c-fos mRNA activation in the brain. Confocal microscopy was utilized to locate and characterize brain regions displaying c-Fos activation.

G Protein-Biased Mu Opioid Receptor Agonist SR-17018 Has Low In Vivo Efficacy In Non-Human Primates

SR-17018 was identified as a highly G protein-biased mu opioid peptide (MOP) receptor agonist and lacked MOP agonist-associated adverse effects in mice. The aim of this study was to determine the functional profile of spinal and systemic administration of SR-17018 in non-human primates. In vivo effects of SR-17018 were compared with those of MOP agonists in different intrinsic efficacies, DAMGO, morphine, heroin, and buprenorphine, in behavioral assays established in rhesus monkeys (Macaca mutatta).

Mice deficient for G-protein-coupled receptor 75 display altered presynaptic structural protein expression and disrupted fear conditioning recall

There are a number of G-protein-coupled receptors (GPCRs) that are considered "orphan receptors" because the information on their known ligands is incomplete. Yet, these receptors are important targets to characterize, as the discovery of their ligands may lead to potential new therapies. GPR75 was recently deorphanized because at least two ligands appear to bind to it, the chemokine CCL5 and the eicosanoid 20-Hydroxyeicosatetraenoic acid. Recent reports suggest that GPR75 may play a role in regulating insulin secretion and obesity.

Activated CD90/Thy-1 fibroblasts co-express the Δ133p53β isoform and are associated with highly inflamed rheumatoid arthritis

The p53 isoform Δ133p53β is known to be associated with cancers driven by inflammation. Many of the features associated with the development of inflammation in rheumatoid arthritis (RA) parallel those evident in cancer progression. However, the role of this isoform in RA has not yet been explored. The aim of this study was to determine whether Δ133p53β is driving aggressive disease in RA.Using RA patient synovia, we carried out RT-qPCR and RNAScope-ISH to determine both protein and mRNA levels of Δ133p53 and p53.

Visualizing in situ viral replication across the natural history of chronic HBV infection

Chronic HBV infection evolves through different phases. Interactions between viral replication and the host immune response in the liver underlie the pathogenesis of this disease.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com