Publications

Role of Nav1.6-Mediated Persistent Sodium Current and Bursting-Pacemaker Properties in Breathing Rhythm Generation

Inspiration is the inexorable active phase of breathing. The brainstem preBötzinger Complex (preBötC) gives rise to inspiratory neural rhythm but its underlying cellular and ionic bases remain unclear. The longstanding “pacemaker hypothesis” posits that persistent Na+ current (_I_NaP) that gives rise to bursting-pacemaker properties in preBötC interneurons is essential for rhythmogenesis. We tested the pacemaker hypothesis by conditionally knocking out and knocking down the _Scn8a_ (NaV1.6) gene in core rhythmogenic preBötC neurons.

Detection of CSF1 gene derangement in ‘sclerosing mucoepidermoid carcinoma with eosinophilia’ of the parotid gland masquerading as Langerhans cell histiocytosis

Malignant salivary gland tumours characterized by mucoepidermal differentiation with sclerotic stroma rich in lymphocytes and eosinophils have been designated the name sclerosing mucoepidermoid carcinoma with eosinophilia1-4 (SMECE). However, it has not been listed as an entity in the chapter on salivary gland, 2022 WHO Classification of Head and Neck Tumours5 . Some reports highlighted the lack of MAML2 translocation in these tumours, as distinct from classical mucoepidermoid carcinoma (MEC) of the salivary glands.

Spatial Transcriptomics: Emerging Technologies in Tissue Gene Expression Profiling

Spatial transcriptomics technologies are providing new insights to study gene expression, allowing researchers to investigate the spatial organization of transcriptomes in cells and tissues. This approach enables the creation of high-resolution maps of gene expression patterns within their native spatial context, adding an extra layer of information to bulk sequencing data.

Prenatal CFAP53-related laterality defect: case report and review of the literature

Laterality defects include morphological anomalies with impaired left-right asymmetry induction, such as dextrocardia, situs inversus abdominis, situs inversus totalis and situs ambiguus. The different arrangement of major organs is called heterotaxy. We describe for the first time a fetus with situs viscerum inversus and azygos continuation of the inferior vena cava, due to previously unreported variants in compound heterozygosity in the CFAP53 gene, whose product is implied in cilial motility. Prenatal trio exome sequencing was performed with turn-around time during the pregnancy.

[Uterine POLE mutant endometrioid carcinoma combined with human papilloma virus-associated cervical adenocarcinoma: A case report and literature review]

Independent primary uterine and cervical adenocarcinoma are rare and difficult to identify their origins, which makes treatment decision difficult. A 46-year-old female with endometrioid carcinoma and adenocarcinoma, human papilloma virus (HPV)-associated of the uterine cervix was reported.

Understanding spatiotemporal coupling of gene expression using single molecule RNA imaging technologies

Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation.

[Single-cell transcriptome analysis reveals development atlas of mouse molar pulp cells]

Objective: Single-cell RNA sequencing (scRNA-seq) was used to analyze the developing mouse molars, in order to construct a spatiotemporal development atlas of pulp cells, and further to reveal the developmental process and regulatory mechanism of tooth development. Methods: Ten mandibular first molars from C57BL/6 mice in postnatal day (PN) 0 and 3 were respectively dissected and digested to obtain single-cell suspensions. scRNA-seq was performed on 10× Genomics platform. PN 7 mouse molar scRNA-seq data were obtained from our previous study.

Whole organism profiling of the Timp gene family

Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated.

Advanced analysis and applications of single-cell transcriptome sequencing

In summary, with the continuous improvement of technology and methods, scRNA-seq is becoming an indispensable tool in many biomedical fields. It is predicted that single-cell multiplex technology will play a more powerful role in single-cell research of complex organs and tissues in the future. It is expected that the demand and application of scRNA-seq technology will increase greatly in the future, and the technology will become more refined, high-throughput, affordable, and easier to use in scientific research laboratories and clinical laboratories.

Inhibin-Positive "Cholangioblastic" Variant of Intrahepatic Cholangiocarcinoma: Report of 3 New Patients With Review of the Literature

Cholangiocarcinoma is the second most common primary liver malignant neoplasm. It usually affects older individuals in their seventh decade of life with no gender predilection. Recently, a distinct subtype of cholangiocarcinoma has emerged with 2 proposed names: "cholangioblastic" and "solid tubulocystic." This variant predominantly occurs in younger women who lack the common risk factors for patients diagnosed with cholangiocarcinomas, such as older age and chronic liver disease or cirrhosis. We describe 3 new patients with a cholangioblastic variant of intrahepatic cholangiocarcinoma.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com