Publications

Identification of HSPA8 as an interacting partner of MAB21L2 and an important factor in eye development

Pathogenic variants in human MAB21L2 result in microphthalmia, anophthalmia, and coloboma. The exact molecular function of MAB21L2 is currently unknown. We conducted a series of yeast two-hybrid (Y2H) experiments to determine protein interactomes of normal human and zebrafish MAB21L2/mab21l2 as well as human disease-associated variant MAB21L2-p.(Arg51Gly) using human adult retina and zebrafish embryo libraries.These screens identified klhl31, tnpo1, TNPO2/tnpo2, KLC2/klc2, and SPTBN1/sptbn1 as co-factors of MAB21L2/mab21l2.

Interferon-τ -induced ISG15-AS regulates endometrial receptivity during early goat pregnancy

Endometrial receptivity is a critical process for the successful establishment of pregnancy in ruminants. However, the biological role of long non-coding RNAs (lncRNAs) in the development of endometrial receptivity is poorly understood. In this study, we performed RNA-seq analysis of immortalised goat endometrial epithelial cells (gEECs) treated with interferon-τ (IFNT). Transcriptome profiles showed that 8069 high-confidence putative lncRNAs, including 6498 intronic lncRNA transcripts, 1078 lincRNAs and 493 antisense lncRNAs were identified in gEECs with or without IFNT treatment.

Zebrafish her3 knockout impacts developmental and cancer-related gene signatures

HES3 is a basic helix-loop-helix transcription factor that regulates neural stem cell renewal during development. HES3 overexpression is predictive of reduced overall survival in patients with fusion-positive rhabdomyosarcoma, a pediatric cancer that resembles immature and undifferentiated skeletal muscle. However, the mechanisms of HES3 cooperation in fusion-positive rhabdomyosarcoma are unclear and are likely related to her3/HES3's role in neurogenesis.

Acquired CFTR dysfunction and dense distribution of ionocytes in nasal mucosa of children with CRS

Ionocytes are rare cells in airway epithelium characterized by a high expression of CFTR.To investigate the morphology and distribution of ionocytes and the function of CFTR in the nasal mucosal epithelium of children.The exfoliated cells of nasal mucosa from 101 children were detected using flow cytometry to analyze the number of ionocytes and CFTR and the difference of CFTR function. Nasal mucosa and polyps were collected from 10 children with CRSwNP. The RNAscope of FOXI1 and CFTR was detected in pathological paraffin sections.

Haematology, biochemistry and morphological features of peripheral blood cells in captive Boa constrictor

The common boa (Boa constrictor) belongs to the family Boidae and represents one of the most popular traded and kept snake species in captivity. The early diagnosis, prevention and prophylaxis of diseases in this species, and in reptiles in general, still pose major challenges, also due to the lack of reliable reference values. This prompted us to conduct a study on clinically healthy captive B. constrictor to assess their basic health parameters in the blood (haematological and biochemical values, stress markers).

High expression of LGR6 is a poor prognostic factor in esophageal carcinoma

Leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) promotes carcinogenesis and progression in some cancer types. However, there are few reports of LGR6 expression in esophageal squamous cell carcinoma (ESCC). LGR6 expression and clinicopathological features in ESCC were investigated by RNAscope, a highly sensitive RNA in situ hybridization method.Appropriate tumors were selected from 41 cases of ESCC from which tissue microarrays were generated, and LGR6 expression was identified by RNAscope.Thirty-seven patients had LGR6 expression.

Recent advances in cutaneous HPV infection

More than 200 types of human papillomavirus (HPV) have been reported to date and have been associated with various dermatological diseases. Among dermatological diseases, viral verrucae are the most commonly reported to be associated with HPV. Epidermodysplasia verruciformis (EV) consists of three types: typical EV is an autosomal recessive genetic disorder with TMC6/TMC8 gene mutations, atypical EV develops due to various gene mutations that cause immunodeficiency, and acquired EV develops due to acquired immunodeficiency.

Maternal immune activation alters social affective behavior and sensitivity to corticotropin releasing factor in male but not female rats

Prenatal infection increases risk for neurodevelopmental disorders such as autism in offspring. In rodents, prenatal administration of the viral mimic Polyinosinic: polycytidylic acid (Poly I: C) allows for investigation of developmental consequences of gestational sickness on offspring social behavior and neural circuit function. Because maternal immune activation (MIA) disrupts cortical development and sociability, we examined approach and avoidance in a rat social affective preference (SAP) task.

Maturation of GABAergic Synaptic Transmission From Neocortical Parvalbumin Interneurons Involves N-methyl-D-aspartate Receptor Recruitment of Cav2.1 Channels

N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood.

HIV infection of non-classical cells in the brain

HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com