Publications

Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity

Both exercise-induced molecular mechanisms and physiological cardiac remodeling have been previously studied on a whole heart level. However, the regional microstructural tissue effects of these molecular mechanisms in the heart have yet to be spatially linked and further elucidated. We show in exercised mice that the expression of CITED4, a transcriptional co-regulator necessary for cardioprotection, is regionally heterogenous in the heart with preferential significant increases in the lateral wall compared with sedentary mice.

Single-cell transcriptome of the mouse retinal pigment epithelium in response to a low-dose of doxorubicin

Cellular senescence of the retinal pigment epithelium (RPE) is thought to play an important role in vision-threatening retinal degenerative diseases, such as age-related macular degeneration (AMD). However, the single-cell RNA profiles of control RPE tissue and RPE tissue exhibiting cellular senescence are not well known. We have analyzed the single-cell transcriptomes of control mice and mice with low-dose doxorubicin (Dox)-induced RPE senescence (Dox-RPE).

ISX-9 potentiates CaMKIIδ-mediated BMAL1 activation to enhance circadian amplitude

Circadian dysregulation associates with numerous diseases including metabolic dysfunction, sleep disorder, depression and aging. Given that declined circadian amplitude is a trait commonly found with compromised health, interventions that design in precluding circadian amplitude from dampening will aid to mitigate complex, circadian-related diseases. Here we identify a neurogenic small molecule ISX-9 that is able to support persistent and higher amplitude of circadian oscillations. ISX-9 improves diurnal metabolic rhythms in middle-aged mice.

Diminished tubule epithelial farnesoid X receptor expression exacerbates inflammation and fibrosis response in aged rat kidney

Age-associated functional decline of the kidney is accompanied by structural changes including glomerular sclerosis and interstitial fibrosis. Aging kidneys also exhibit increased vulnerability in stressful environmental conditions. In this study, we assessed the differences in responses between young and aged animals to folic acid (FA)-induced renal fibrosis. To monitor the effects of aging on FA-induced kidney fibrosis, we administered folic acid (250 mg/kg) to young (6-month old) and aged (20-month old) rats.

Effect of sex and autism spectrum disorder on oxytocin receptor binding and mRNA expression in the dopaminergic pars compacta of the human substantia nigra

Oxytocin is an endogenous neuropeptide hormone that influences social behaviour and bonding in mammals. Variations in oxytocin receptor (OXTR) expression may play a role in the social deficits seen in autism spectrum disorder. Previous studies from our laboratory found a dense population of OXTR in the human substantia nigra (SN), a basal ganglia structure in the midbrain that is important in both movement and reward pathways. Here, we explore whether differences in OXTR can be identified in the dopaminergic SN pars compacta of individuals with autism.

Elevated TNF-α leads to neural circuit instability in the absence of Interferon Regulatory Factor 8

Interferon regulatory factor 8 (IRF8) is a transcription factor necessary for the maturation of microglia, as well as other peripheral immune cells. It also regulates the transition of microglia and other immune cells to a pro-inflammatory phenotype. Irf8 is also a known risk gene for multiple sclerosis and lupus and it has recently been shown to be downregulated in schizophrenia. While most studies have focused on IRF8-dependent regulation of immune cell function, little is known about how it impacts neural circuits.

The infectivity and pathogenicity of Hepatitis A virus live-attenuated vaccine strain H2 in type I interferon receptor-deficient mice

Hepatitis A virus (HAV) live-attenuated vaccine H2 strain has been approved for clinical use for decades with ideal safety profiles in nonhuman primate models and humans. Recently, type I interferon (IFN) receptor-deficient mice were shown to be susceptible to HAV infection. Herein, we sought to determine the infection and replication dynamics of the H2 in Ifnar-/- mice that lack receptors for type I IFN.

The different prognostic significance of polysialic acid and CD56 expression in tumor cells and lymphocytes identified in breast cancer

Protein glycosylation, the attachment of carbohydrates onto proteins, is a fundamental process that alters the biological activity of proteins. Changes to glycosylation states are associated with many forms of cancer including breast cancer. Through immunohistological analysis of breast cancer patient tumors, we have discovered the expression of an atypical glycan-polysialic acid (polySia)-in breast cancer.

LB981 Pandemic associated chilblain-like lesions result from an inducible type 1 interferon response to SARS-CoV-2

Chilblain-like lesions (CLL), known in the lay press as “COVID toes,” increased significantly during the COVID-19 pandemic. The phenotypic similarity of chilblains in the monogenic type 1 interferonopathies, coupled with the consistent clinical phenotype across multiple countries and temporospatial association with COVID-19 spread, suggest a SARS-CoV-2 triggered immune phenomenon. Yet direct evidence of this relationship has been limited due to low rates of SARS-CoV-2 positivity utilizing conventional testing.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com