Publications

Modulation of Purinergic Signaling in Keratinocytes in Spared Nerve Injury Model of Neuropathic Pain

Epidermal keratinocytes express various purinergic 2 receptors that play an essential role in cell growth, differentiation, and proliferation. In the conditions of injury, concentrations of extracellular adenosine triphosphate (ATP) may dramatically increase due to cell damage and inflammatory processes. In this situation activation of purinergic signaling in keratinocytes could act as a double-edged sword contributing to skin regeneration or cell apoptosis.

The Impact of Avpr1a Expression and Host-Microbiome Interactions on Visceral Hypersensitivity

Visceral hypersensitivity (VH) is commonly cited as a major driver of chronic abdominal pain in “functional” gastrointestinal disorders (e.g., irritable bowel syndrome) where persistent and/or recurrent abdominal pain is the primary unifying symptom regardless of any alterations in bowel habits. The complexity of VH is in part influenced by genetic factors and individual differences in gut microbiome composition, yet specific mechanisms that generate VH remain incompletely understood.

Sickle Cell Disease Associated Changes in the Gut Microbiome Contribute to Persistent Pain

Many patients with sickle cell disease (SCD) suffer from chronic pain, the underlying causes of which are unclear. Recent 16s ribosomal RNA sequencing studies revealed differences in the number and types of bacteria in the gastrointestinal tract of patients and mouse models of SCD relative to controls, but it is unclear if or how these changes contribute to symptomology. In these experiments, we used transgenic SCD mice to determine the extent to which disease related gut dysbiosis contributes to persistent pain.

Investigating Post-transcriptional Mechanism of Neuropathic Pain

Neuropathic pain is a chronic condition which can arise following damage to the somatosensory system and often involves both hyperalgesia and allodynia. The molecular mechanisms of neuropathic pain remain incompletely understood but require enduring alterations in specific gene programs and protein synthesis affecting neuronal signaling and excitability. We investigate non-coding RNA and RNA-binding protein regulatory pathways in impacting hyperalgesia and neuropathic pain using the mouse spared nerve injury model.

Sensory Neurotransmitter CGRP Modulates Oral Cancer Growth and Cancer-associated Immune Response

Head and neck squamous cell carcinoma (HNSCC) induces severe pain due in part to activation of primary afferent neurons by cancer-secreted mediators. Local neurotransmitter release (e.g., calcitonin gene-related peptide (CGRP)) from trigeminal neurons innervating the cancer has been linked to tumorigenesis. We hypothesize that CGRP exerts a dual effect on both cancer-associated pain and tumor progression, suggesting that CGRP may be a promising therapeutic target in HNSCC treatment.

Effects of Daily Discrimination on Pain, Mood, and Sleep in People Living with HIV

Emerging literature suggests that experiences of discrimination negatively influence health and well-being. It is unfortunately common for people living with HIV (PLWH) to be stigmatized and discriminated against because of their HIV status and other marginalized identities (e.g., ethnicity/race, sexual identity and orientation). To date, little research has specifically examined discrimination in PWLH and its associations with pain and other pain-relevant factors such as mood and sleep.

Inadequate Analgesia in African Americans with Cancer Pain

African Americans have been found to receive less medication and experience more pain than Caucasians. Unfortunately, many studies simply highlight the disparities that exist between African Americans and Caucasian in pain management, but there is a lack of understanding at the etiology of these disparities. The purpose of this study was to determine the adequacy of analgesia that was prescribed for African Americans with cancer pain and elucidate any potential characteristics that contributed to receiving appropriate analgesia.

Neuron-Keratinocyte Communication in the Epidermis in Painful Diabetic Neuropathy

Painful diabetic neuropathy (PDN) is one of the most common and intractable complications of diabetes. PDN is characterized by small-fiber degeneration, which can progress to complete loss of cutaneous innervation and is accompanied by neuropathic pain. Uncovering the mechanisms underlying axonal degeneration in PDN remains a major challenge to finding effective and disease-modifying therapies. Sensory nerve afferents normally extend into the epidermis in close juxtaposition to keratinocytes but degenerate in diabetic skin.

Activation of Keratinocyte Gq-linked G-Protein Coupled Receptors Remodels Dorsal Root Ganglion Neurons Single-Cell Transcriptomic Profile

Keratinocytes are closely juxtaposed to cutaneous nerve terminals, enabling communication between keratinocytes and cutaneous nerves. We investigated potential mechanisms that mediate this communication. We genetically expressed stimulatory DREADDs (hM3Dq) into K14 basal keratinocytes (K14) in mice as a tool for mimicking the activation of Gq-linked G protein-coupled receptors (GPCRs) in K14 expressing cells.

Global Analyses of mRNA Expression in Human Sensory Neurons Reveals eIF5a as a Conserved Target for Inflammation-associated Pain

Sensory neurons derived from human induced pluripotent stem cells (hiPSCs) are a promising model. One limitation posed by the use of monocultures is the loss of cellular heterogeneity found in tissues. Here we make use of high-throughput RNA sequencing to quantify gene expression in hiPSC-derived mono-cultured and co-cultured sensory neurons.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com