Publications

Comparative characterization of SARS-CoV-2 variants of concern and mouse-adapted strains in mice

SARS-CoV-2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS-CoV-2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS-CoV-2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood.

miR-543 regulates high glucose-induced fibrosis and autophagy in diabetic nephropathy by targeting TSPAN8

Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which can lead to renal failure and fatality. miRNAs are an important class of endogenous non-coding RNAs implicated in a wide range of biological processes and pathological conditions. This study aims to investigate the potential functional roles of miR-543 in DN and its underlying mechanisms.qRT-PCR was performed to detect the expression levels of miR-543 and TSPAN8 in kidney tissues of mice with DN. Western blot (WB) was used to measure the protein levels.

Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing

A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest.

Mesangial cell-derived tenascin-C contributes to mesangial cell proliferation and matrix protein production in IgA nephropathy

Tenascin-C (TNC), a non-structural extracellular matrix glycoprotein, is transiently expressed during development or after injury, playing an important role in injury and repair process. The potential role of TNC in the pathogenesis of IgA nephropathy (IgAN) remains to be clarified.Immunohistochemistry staining for TNC was conducted on paraffin-embedded slices from renal biopsies of 107 IgAN patients, and correlation analysis was made between mesangial TNC expression and clinic-pathological parameters.

Epidermal growth factor-like domain protein 6 recombinant protein facilitates osteogenic differentiation in adipose stem cells via bone morphogenetic protein 2/recombinant mothers against decapentaplegic homolog 4 signaling pathway

Adipose-derived mesenchymal stem cells (ADSCs) are a class of pluripotent stem cells isolated from the adipose tissue; they can differentiate into osteoblasts after induction and play an important role in bone repair. EGFL6 protein is secreted by adipocytes and osteoblasts and can promote endothelial cell migration and angiogenesis. This study aimed to explore the effect of recombinant EGFL6 protein on the osteogenic differentiation of ADSCs. The cells were incubated with fluorescein isothiocyanate-conjugated antibodies and analyzed by flow cytometry.

Five years of porcine circovirus 3: What have we learned about the clinical disease, immune pathogenesis, and diagnosis

Porcine circovirus type 3 (PCV3) is a non-enveloped, circular, single-stranded DNA virus in the family Circoviridae. This member of the genus Circovirus was initially described as affecting swine in 2016, and new research has provided further insight into its structural characteristics, disease presentations, pathogenesis, and immune response following infection. Therefore, this review aims to summarize advances in PCV3-related research about genomic characteristics epidemiology, pathogenesis, immune response, and the development of diagnostics.

Localization of NGF expression in mouse spleen and salivary gland: Relevance to pleotropic functions

Our primary goal was to determine if leukocytes are a source of nerve growth factor (NGF) in mouse spleen. Noradrenergic nerves were localized to arteries and white pulp in normal spleens but only to arteries in ultra-immunodeficient R2G2 mice that lack leukocytes. NGF mRNA was detected in vascular cells and leukocytes of normal spleen, and several of the latter were T cells based on double labeling for NGF mRNA and CD3.

InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays

The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics.

Generation of a zebrafish knock-in line expressing MYC-tagged Sox11a using CRISPR/Cas9 genome editing

Advances in CRISPR-Cas9 genome editing technology have strengthened the role of zebrafish as a model organism for genetics and developmental biology. These tools have led to a significant increase in the production of loss-of-function mutant zebrafish lines. However, the generation of precisely edited knock-in lines has remained a significant challenge in the field due to the decreased efficiency of homology directed repair (HDR).

Rabies anterograde monosynaptic tracing allows identification of postsynaptic circuits receiving distinct somatosensory input

Somatosensory neurons detect vital information about the environment and internal status of the body, such as temperature, touch, itch, and proprioception. The circuit mechanisms controlling the coding of somatosensory information and the generation of appropriate behavioral responses are not clear yet. In order to address this issue, it is important to define the precise connectivity patterns between primary sensory afferents dedicated to the detection of different stimuli and recipient neurons in the central nervous system.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com