Publications

Multisystemic lymphoplasmacytic inflammation associated with PCV-3 in wasting pigs

Porcine circovirus 3 (PCV-3) has been detected in diseased and healthy pigs of different ages. Several reports have associated the agent with reproductive failure and mummified and stillborn piglets. One report from North America has proposed a consistent potential association with postweaning disorders. Thus, the present case report aimed to describe the histopathological lesions and their association with the presence of PCV-3 genome in postweaning pigs showing growth-retardation and thrown-back ears.

Subcellular localization of biomolecules and drug distribution by high-definition ion beam imaging

Simultaneous visualization of the relationship between multiple biomolecules and their ligands or small molecules at the nanometer scale in cells will enable greater understanding of how biological processes operate. We present here high-definition multiplex ion beam imaging (HD-MIBI), a secondary ion mass spectrometry approach capable of high-parameter imaging in 3D of targeted biological entities and exogenously added structurally-unmodified small molecules.

Localization and genotyping of canine papillomavirus in canine inverted papillomas

Numerous canine papillomaviruses (CPVs) have been identified (CPV1-23). CPV1, 2, and 6 have been associated with inverted papillomas (IPs). We retrieved 19 IPs from 3 histopathology archives, and evaluated and scored koilocytes, inclusion bodies, giant keratohyalin granules, cytoplasmic pallor, ballooning degeneration, and parakeratosis. IHC targeting major capsid proteins of PV was performed, and CPV genotyping was achieved by PCR testing. Tissue localization of CPV DNA and RNA was studied by chromogenic and RNAscope in situ hybridization (DNA-CISH, RNA-ISH, respectively).

LncRNA expression and SDHB mutations in pheochromocytomas and paragangliomas

Although pheochromocytomas and paragangliomas (PPGLs) are usual low-grade neoplasms, the metastatic forms of these lesions are associated with high morbidity and mortality. Recent studies have discovered multiple aberrantly expressed long non-coding RNAs (lncRNAs) in cancers that may have regulatory roles in tumor pathogenesis and metastasis; however, the roles of some lncRNAs in PPGLs are still unknown.

Lung donation following SARS-CoV-2 infection

There have been over 177 million cases of COVID-19 worldwide, many of whom could be organ donors. Concomitantly, there is an anticipated increase in the need for donor lungs due to expanding indications. Given that the respiratory tract is most commonly affected by COVID-19, there is an urgent need to develop donor assessment criteria while demonstrating safety and "efficacy" of lung donation following COVID-19 infection.

Hepatic mitochondrial SAB deletion or knockdown alleviates diet induced metabolic syndrome, steatohepatitis and hepatic fibrosis

The hepatic MAPK cascade leading to JNK activation has been implicated in the pathogenesis of nonalcoholic fatty liver /non-alcoholic steatohepatitis (NAFL/NASH). In acute hepatotoxicity we previously identified a pivotal role for mitochondrial SH3BP5 (SAB) as a target of JNK which sustains its activation through promotion of reactive oxygen species (ROS) production.Assess the role of hepatic SAB in experimental NASH and metabolic syndrome.In mice fed high-fat, high-calorie, high-fructose (HFHC) diet, SAB expression progressively increased through a sustained JNK/ATF2 activation loop.

Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology

Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. Neuronal calcium dysfunction and microglial-mediated neuroinflammation are closely associated with the development of AD. However, it remains unknown whether calcium dysfunction contributes to microglial activation and, in turn, AD pathology in vivo. In this study, we demonstrated that the expression of calcium homeostasis modulator family protein 2 (Calhm2) is increased in an AD mouse model.

Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R+/- mouse model of ALSP, which can be rescued via CSF1R inhibitors

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia is an autosomal dominant neurodegenerative disease caused by mutations in colony-stimulating factor 1 receptor (CSF1R). We sought to identify the role of microglial CSF1R haploinsufficiency in mediating pathogenesis. Using an inducible Cx3cr1 CreERT2/+-Csf1r +/fl system, we found that postdevelopmental, microglia-specific Csf1r haploinsufficiency resulted in reduced expression of homeostatic microglial markers.

A cyclic AMP related gene network in microglia is inversely regulated by morphine tolerance and withdrawal

Background Microglia have recently been implicated in opioid dependence and withdrawal. Mu Opioid (MOR) receptors are expressed in microglia, and microglia form intimate connections with nearby neurons. Accordingly, opioids have both direct (MOR mediated) and indirect (neuron-interaction mediated) effects on microglia function. Methods To investigate this directly, we used RNA sequencing of ribosome-associated RNAs from striatal microglia (RiboTag-Seq) after the induction of morphine tolerance and followed by naloxone precipitated withdrawal (n=16).

Deletion of TNFAIP6 gene in human keratinocytes demonstrates a role for TSG-6 to retain hyaluronan inside epidermis

TNFα-stimulated gene 6 (TSG-6) is a soluble protein secreted in the extracellular matrix (ECM) by various cell types in response to inflammatory stimuli. TSG-6 interacts with ECM molecules, particularly hyaluronan (HA), and promotes cutaneous wound closure in mouse. Between epidermal cells, the discrete ECM contains HA and tiny amount of TSG-6.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com