Publication

Verrucous Carcinoma of the Esophagus Is A Genetically Distinct Subtype of Esophageal Squamous Cell Carcinoma

Esophageal verrucous carcinoma (VSCC) is a rare and morphologically distinct type of esophageal squamous cell carcinoma (SCC). Diagnosing VSCC on biopsy material is challenging given the lack of significant atypia and the presence of keratinizing epithelium and exophytic growth. The molecular pathogenesis of VSCC remains unclear. The aim of this study was to characterize the genomic landscape of VSCC in comparison to conventional esophageal SCC. Three cases of VSCC from the Brigham and Women's Hospital pathology archive were identified.

RNA in situ hybridization and expression of related genes regulating the accumulation of triterpenoids in Cyclocarya paliurus

Cyclocarya paliurus, a woody medicinal species in the Juglandaceae, grows extensively in subtropical areas of China. Triterpenoids in the leaves have health-promoting effects, including hypoglycemic and hypolipidemic activities. To understand triterpenoid biosynthesis, transport, and accumulation in C. paliurus during the growing season, gene cloning, gene expression, and RNA in situ hybridization of related genes were used, and accumulation was examined in various organs. The complete CDSs of three genes, CpHMGR, CpDXR, and CpSQS, were obtained from GenBank and RACE.

Mucosal IFNγ production and potential role in protection in Escherichia coli O157:H7 vaccinated and challenged cattle

Shiga-toxin producing Escherichia coli O157:H7 (O157)-based vaccines can provide a potential intervention strategy to limit foodborne zoonotic transmission of O157. While the peripheral antibody response to O157 vaccination has been characterized, O157-specific cellular immunity at the rectoanal junction (RAJ), a preferred site for O157 colonization, remains poorly described. Vaccine induced mucosal O157-specific antibodies likely provide some protection, cellular immune responses at the RAJ may also play a role in protection.

Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting

Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed.

Odontoblast death drives cell-rich zone-derived dental tissue regeneration

Severe dental tissue damage induces odontoblast death, after which dental pulp stem and progenitor cells (DPSCs) differentiate into odontoblast-like cells, contributing to reparative dentin. However, the damage-induced mechanism that triggers this regeneration process is still not clear. We aimed to understand the effect of odontoblast death without hard tissue damage on dental regeneration.

Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries

Müllerian inhibiting substance (MIS/AMH), produced by granulosa cells of growing follicles, is an important regulator of folliculogenesis and follicle development. Treatment with exogenous MIS in mice suppresses follicle development and prevents ovulation. To investigate the mechanisms by which MIS inhibits follicle development, we performed single-cell RNA sequencing of whole neonatal ovaries treated with MIS at birth and analyzed at postnatal day 6, coinciding with the first wave of follicle growth.

Diffuse trophoblast damage is the hallmark of SARS-CoV-2-associated fetal demise

Placental pathology in SARS-CoV-2-infected pregnancies seems rather unspecific. However, the identification of the placental lesions due to SARS-CoV-2 infection would be a significant advance in order to improve the management of these pregnancies and to identify the mechanisms involved in a possible vertical transmission. The pathological findings in placentas delivered from 198 SARS-CoV-2-positive pregnant women were investigated for the presence of lesions associated with placental SARS-CoV-2 infection.

Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens

There is urgent need for new drug regimens that more rapidly cure tuberculosis (TB). Existing TB drugs and regimens vary in treatment-shortening activity, but the molecular basis of these differences is unclear, and no existing assay directly quantifies the ability of a drug or regimen to shorten treatment. Here, we show that drugs historically classified as sterilizing and non-sterilizing have distinct impacts on a fundamental aspect of Mycobacterium tuberculosis physiology: ribosomal RNA (rRNA) synthesis.

Nuclear isoform of FGF13 regulates post-natal neurogenesis in the hippocampus through an epigenomic mechanism

The hippocampus is one of two niches in the mammalian brain with persistent neurogenesis into adulthood. The neurogenic capacity of hippocampal neural stem cells (NSCs) declines with age, but the molecular mechanisms of this process remain unknown. In this study, we find that fibroblast growth factor 13 (FGF13) is essential for the post-natal neurogenesis in mouse hippocampus, and FGF13 deficiency impairs learning and memory.

TMEM16C is involved in thermoregulation and protects rodent pups from febrile seizures

Febrile seizures (FSs) are the most common convulsion in infancy and childhood. Considering the limitations of current treatments, it is important to examine the mechanistic cause of FSs. Prompted by a genome-wide association study identifying TMEM16C (also known as ANO3) as a risk factor of FSs, we showed previously that loss of TMEM16C function causes hippocampal neuronal hyperexcitability [Feenstra et al., Nat. Genet. 46, 1274-1282 (2014)].

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com